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FOREWORD 

 

The Self-Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university‘s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to the 

topic of study and to kindle the learner‘s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every possibility 

for some omission or inadequacy in few areas or topics, which would 

definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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BLOCK-1 THEORY OF RING AND 

MODULE 

 

Introduction to the block-I 

Unit 1 NOETHERIAN AND ARTINIAN RINGS: In this unit we discuss 

about primary decomposition and module over ring also deal with 

Noetherian and Artinian Ring Basics 

Unit 2 HILBERT BASIS THEOREM : This unit deals with Basis 

theorem and its properties. 

Unit 3 NOETHERIAN RING : This Unit deals with Noetherian ring and 

its example. 

Unit 4 MODULE, SUB-MODULE, QUOTIENT MODULE : This unit 

deals with Module over ring, Sun Module and Quotient Module Over 

Ring and its properties.  

Unit 5 HOMOMORPHISM and ISOMORPHISM : This unit deals with 

Homomorphism and Isomorphism also deals with its properties. 

Unit 6 EXACT SEQUENCE, FOUR AND FIVE LEMMA : This Unit 

deals with exact sequence and four , five lemma theorem with state and 

prove. 

Unit 7 DIRECT SUM AND PRODUCT OF MODULE : This Unit Deals 

with direct sum and product of module and its example.  
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UNIT 1: NOETHERIAN AND 

ARTINIAN RINGS 
 

STRUCTURE 

1.0 Objective  

1.1 Introduction : Noetherian Rings Basics 

        1.1.1 Properties 

        1.1.2 Primary Decomposition 

        1.2.3 Krull–Akizuki theorem 

1.2  Noetherian scheme 

       1.2.1 Artinian Ring 

       1.2.2 Modules Over Ring 

       1.2.3 Simple Artinian Ring 

       1.2.4 Artinian Algebra 

1.3 Serial Modules 

      1.3.1 Properties of uniserial and serial rings and modules 

      1.3.2 A decomposition uniqueness property 

      1.3.3 Perfect ring 

      1.3.4 Semiperfect Ring 

1.4 Gorenstein Ring 

      1.4.1 Proof of Krull's intersection theorem 

      1.4.2 Proof of the principal ideal theorem 

      1.4.3 Proof of the height theorem 

1.5 Theorem for Exercise 

1.6 Let Us Sum Up 

1.7 Keyword 

1.8 Questions For Review 

1.9 Answer to check in Progress 

1.10 References and Suggestion Reading 

1.0 OBJECTIVE 

Learn about non-commutative rings, it is necessary to distinguish 

between three very similar concepts: 
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 A ring is left-Noetherian if it satisfies the ascending chain 

condition on left ideals. 

 A ring is right-Noetherian if it satisfies the ascending chain 

condition on right ideals. 

 A ring is Noetherian if it is both left- and right-Noetherian. 

For commutative rings, all three concepts coincide, but in 

general they are different. There are rings that are left-

Noetherian and not right-Noetherian, and vice versa. 

There are other, equivalent, definitions for a ring R to be left-

Noetherian: 

 Every left ideal I in R is finitely generated, i.e. there exist 

elements a1, ..., an in I such that I = Ra1 + ... + Ran. 

 Every non-empty set of left ideals of R, partially ordered by 

inclusion, has a maximal element with respect to set inclusion. 

Similar results hold for right-Noetherian rings. 

For a commutative ring to be Noetherian it suffices that every 

prime ideal of the ring is finitely generated. 

1.1 INTRODUCTION: NOETHERIAN 

RINGS BASICS  

Definition. A ring A is noetherian, respectively artinian, if it is 

noetherian, respectively artinian, considered as an A-module. In other 

words, the ring A is noetherian, respectively artinian, if every chain a1 ⊆ 

a2 ⊆ · · · of ideal ai in A is stable, respectively if every chain a1 ⊇ a2 ⊇ 

· · · of ideals ai in A is stable.  

The area of abstract algebra known as ring theory, a Noetherian ring is 

a ring that satisfies the ascending chain condition on left and right ideals, 

which means there is no infinite ascending sequence of left (or right) 

ideals; that is, given any chain of left (or right) ideals, 

  ⊆  ⊆     ⊆   ⊆     ⊆   

there exists an n such that:  
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Noetherian rings are named after Emmy Noether. 

The notion of a Noetherian ring is of fundamental importance in 

both commutative and noncommutative ring theory, due to the role it 

plays in simplifying the ideal structure of a ring. For instance, the ring 

of integers and the polynomial ring over a field are both Noetherian 

rings, and consequently, such theorems as the Lasker–Noether theorem, 

the Krull intersection theorem, and Hilbert's basis theorem hold for them. 

Furthermore, if a ring is Noetherian, then it satisfies the descending chain 

condition on prime ideals. This property suggests a deep theory of 

dimension for Noetherian rings beginning with the notion of the Krull 

dimension. 

  1.1.1 Properties 

 If R is a Noetherian ring, then R[X] is Noetherian by the Hilbert 

basis theorem. By induction, R[X1, ..., Xn] is a Noetherian ring. 

Also, R[[X]], the power series ring is a Noetherian ring. 

 If R is a Noetherian ring and I is a two-sided ideal, then the factor 

ring R/I is also Noetherian. Stated differently, the image of any 

surjective ring homomorphism of a Noetherian ring is 

Noetherian. 

 Every finitely-generated commutative algebra over a 

commutative Noetherian ring is Noetherian. (This follows from 

the two previous properties.) 

 A ring R is left-Noetherian if and only if every finitely 

generated left R-module is a Noetherian module. 

 Every localization of a commutative Noetherian ring is 

Noetherian. 

 A consequence of the Akizuki-Hopkins-Levitzki Theorem is that 

every left Artinian ring is left Noetherian. Another consequence 

is that a left Artinian ring is right Noetherian if and only if right 

Artinian. The analogous statements with "right" and "left" 

interchanged are also true. 

 A left Noetherian ring is left coherent and a left 

Noetherian domain is a left Ore domain. 
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 A ring is (left/right) Noetherian if and only if every direct sum 

of injective (left/right) modules is injective. Every injective 

module can be decomposed as direct sum of indecomposable 

injective modules. 

 In a commutative Noetherian ring, there are only finitely 

many minimal prime ideals. 

 In a commutative Noetherian domain R, every element can be 

factorized into irreducible elements. Thus, if, in addition, 

irreducible elements are prime elements, then R is a unique 

factorization domain. 

 Examples 

 Any field, including fields of rational numbers, real numbers, 

and complex numbers, is Noetherian. (A field only has two 

ideals — itself and (0).) 

 Any principal ideal ring, such as the integers, is Noetherian since 

every ideal is generated by a single element. This 

includes principal ideal domains and Euclidean domains. 

 A Dedekind domain (e.g., rings of integers) is Noetherian since 

every ideal is generated by at most two elements. The 

"Noetherian" follows from the Krull–Akizuki theorem. The 

bounds on the number of the generators is a corollary of 

the Forster–Swan theorem (or basic ring theory). 

 The coordinate ring of an affine variety is a Noetherian ring, as a 

consequence of the Hilbert basis theorem. 

 The enveloping algebra U of a finite-dimensional Lie algebra   is 

a both left and right Noetherian ring; this follows from the fact 

that the associated graded ring of U is a quotient of       , 

which is a polynomial ring over a field; thus, Noetherian. For the 

same reason, the Weyl algebra, and more general rings 

of differential operators, are Noetherian.  

 The ring of polynomials in finitely-many variables over the 

integers or a field. 

Rings that are not Noetherian tend to be (in some sense) very 

large. Here are some examples of non-Noetherian rings: 
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 The ring of polynomials in infinitely-many variables, X1, X2, X3, 

etc. The sequence of ideals (X1), (X1, X2), (X1, X2, X3), etc. is 

ascending, and does not terminate. 

 The ring of algebraic integers is not Noetherian. For example, it 

contains the infinite ascending chain of principal ideals: (2), 

(2
1/2

), (2
1/4

), (2
1/8

), ... 

 The ring of continuous functions from the real numbers to the 

real numbers is not Noetherian: Let In be the ideal of all 

continuous functions f such that f(x) = 0 for all x ≥ n. The 

sequence of ideals I0, I1, I2, etc., is an ascending chain that does 

not terminate. 

 The ring of stable homotopy groups of spheres is not Noetherian.   

However, a non-Noetherian ring can be a subring of a 

Noetherian ring. Since any integral domain is a subring of a 

field, any integral domain that is not Noetherian provides an 

example. To give a less trivial example, 

 The ring of rational functions generated by x and y/x
n
 over a 

field k is a subring of the field k(x,y) in only two variables. 

Indeed, there are rings that are right Noetherian, but not left 

Noetherian, so that one must be careful in measuring the "size" 

of a ring this way. For example, if L is a subgroup 

of Q
2
 isomorphic to Z, let R be the ring of 

homomorphisms f from Q
2
 to itself satisfying f(L) ⊂ L. Choosing 

a basis, we can describe the same ring R as 

    {[
  
  

]            } 

This ring is right Noetherian, but not left Noetherian; the 

subset I⊂R consisting of elements with a=0 and γ=0 is a left ideal that is 

not finitely generated as a left R-module. 

If R is a commutative subring of a left Noetherian ring S, and S is finitely 

generated as a left R-module, then R is Noetherian. (In the special case 

when S is commutative, this is known as Eakin's theorem.) However this 

is not true if R is not commutative: the ring R of the previous paragraph 
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is a subring of the left Noetherian ring S = Hom(Q
2
,Q

2
), and S is finitely 

generated as a left R-module, but R is not left Noetherian. 

A unique factorization domain is not necessarily a Noetherian ring. It 

does satisfy a weaker condition: the ascending chain condition on 

principal ideals. 

A valuation ring is not Noetherian unless it is a principal ideal domain. It 

gives an example of a ring that arises naturally in algebraic geometry but 

is not Noetherian. 

 1.1.2 Primary Decomposition 

In the ring Z of integers, an arbitrary ideal is of the form (n) for some 

integer n (where (n) denotes the set of all integer multiples of n). If n is 

non-zero, and is neither 1 nor −1, by the fundamental theorem of 

arithmetic, there exist primes pi, and positive integers ei, with   

∏   
  

 . In this case, the ideal (n) may be written as the intersection of the 

ideals (pi
e
i); that is,     ⋂     

   . This is referred to as a primary 

decomposition of the ideal (n). 

In general, an ideal Q of a ring is said to be primary if Q is proper and 

whenever xy   Q, either x   Q or y
n
   Q for some positive integer n. 

In Z, the primary ideals are precisely the ideals of the form (p
e
) 

where p is prime and e is a positive integer. Thus, a primary 

decomposition of (n) corresponds to representing (n) as the intersection 

of finitely many primary ideals. 

Since the fundamental theorem of arithmetic applied to a non-zero 

integer n that is neither 1 nor −1 also asserts uniqueness of the 

representation   ∏   
  

  for pi prime and ei positive, a primary 

decomposition of (n) is essentially unique. 

For all of the above reasons, the following theorem, referred to as 

the Lasker–Noether theorem, may be seen as a certain generalization of 

the fundamental theorem of arithmetic: 

Lasker-Noether Theorem. Let R be a commutative Noetherian ring and 

let I be an ideal of R. Then I may be written as the intersection of finitely 

many primary ideals with distinct radicals; that is: 
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  ⋂   
 
    

with Qi primary for all i and Rad(Qi) ≠ Rad(Qj) for i ≠ j. Furthermore, if: 

  ⋂   
 
    

is decomposition of I with Rad(Pi) ≠ Rad(Pj) for i ≠ j, and both 

decompositions of I are irredundant (meaning that no proper subset of 

either {Q1, ..., Qt} or {P1, ..., Pk} yields an intersection equal 

to I), t = k and (after possibly renumbering the Qi) Rad(Qi) = Rad(Pi) for 

all i. 

For any primary decomposition of I, the set of all radicals, that is, the set 

{Rad(Q1), ..., Rad(Qt)} remains the same by the Lasker–Noether 

theorem. In fact, it turns out that (for a Noetherian ring) the set is 

precisely the assassinator of the module R/I; that is, the set of 

all annihilators of R/I (viewed as a module over R) that are prime. 

1.1.3 Krull–Akizuki Theorem 

In algebra, the Krull–Akizuki theorem states the following: let A be a 

one-dimensional reduced noetherian ring, K its total ring of fractions. 

If B is a subring of a finite extension L of K containing A and is not a 

field, then B is a one-dimensional noetherian ring. Furthermore, for every 

nonzero ideal I of B,     is finite over A.  

Note that the theorem does not say that B is finite over A. The theorem 

does not extend to higher dimension. One important consequence of the 

theorem is that the integral closure of a Dedekind domain A in a finite 

extension of the field of fractions of A is again a Dedekind domain. This 

consequence does generalize to a higher dimension: the Mori–Nagata 

theorem states that the integral closure of a noetherian domain is a Krull 

domain. 

Proof 

Here, we give a proof when    . Let    be minimal prime ideals of A; 

there are finitely many of them. Let    be the field of fractions of   

   and    the kernel of the natural map       . Then we have: 

    ⊂     ⊂   . 
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Now, if the theorem holds when A is a domain, then this implies that B is 

a one-dimensional noetherian domain since each      is and since   

∏    . Hence, we reduced the proof to the case A is a domain. Let   

 ⊂   be an ideal and let a be a nonzero element in the nonzero ideal   

 . Set            . Since      is a zero-dim noetherian ring; 

thus, artinian, there is an l such that       for all    . We claim 

   ⊂         

Since it suffices to establish the inclusion locally, we may assume A is a 

local ring with the maximal ideal  . Let x be a nonzero element in B. 

Then, since A is noetherian, there is an n such that     ⊂      and 

so              ⊂     . Thus, 

              

Now, assume n is a minimum integer such that     and the last 

inclusion holds. If    , then we easily see that         . But then 

the above inclusion holds for    , contradiction. Hence, we have   

  and this establishes the claim. It now follows: 

              ⊂                           

Hence,      has finite length as A-module. In particular, the image 

of I there is finitely generated and so I is finitely generated. Finally, the 

above shows that      has zero dimension and so B has dimension 

one. □ 

1.2 NOETHERIAN SCHEME 

In algebraic geometry, a noetherian scheme is a scheme that admits a 

finite covering by open affine subsets       ,    noetherian rings. More 

generally, a scheme is locally noetherian if it is covered by spectra of 

noetherian rings. Thus, a scheme is noetherian if and only if it is locally 

noetherian and quasi-compact. As with noetherian rings, the concept is 

named after Emmy Noether. 

It can be shown that, in a locally noetherian scheme, if        is an 

open affine subset, then A is a noetherian ring. In particular,       is a 
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noetherian scheme if and only if A is a noetherian ring. Let X be a locally 

noetherian scheme. Then the local rings      are noetherian rings. 

A noetherian scheme is a noetherian topological space. But the converse 

is false in general; consider, for example, the spectrum of a non-

noetherian valuation ring. 

The definitions extend to formal schemes. 

1.2.1 Artinian Ring 

In abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that 

satisfies the descending chain condition on ideals; that is, there is no 

infinite descending sequence of ideals. Artinian rings are named 

after Emil Artin, who first discovered that the descending chain 

condition for ideals simultaneously generalizes finite rings and rings that 

are finite-dimensional vector spaces over fields. The definition of 

Artinian rings may be restated by interchanging the descending chain 

condition with an equivalent notion: the minimum condition. 

A ring is left Artinian if it satisfies the descending chain condition on left 

ideals, right Artinian if it satisfies the descending chain condition on 

right ideals, and Artinian or two-sided Artinian if it is both left and right 

Artinian. For commutative rings the left and right definitions coincide, 

but in general they are distinct from each other. 

The Artin–Wedderburn theorem characterizes all simple Artinian rings 

as the ring of matrices over a division ring. This implies that a simple 

ring is left Artinian if and only if it is right Artinian. 

The same definition and terminology can be applied to modules, with 

ideals replaced by submodules. 

Although the descending chain condition appears dual to the ascending 

chain condition, in rings it is in fact the stronger condition. Specifically, 

a consequence of the Akizuki–Hopkins–Levitzki theorem is that a left 

(resp. right) Artinian ring is automatically a left (resp. right) Noetherian 

ring. This is not true for general modules; that is, an Artinian 

module need not be a Noetherian module 

Examples 
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 An integral domain is Artinian if and only if it is a field. 

 A ring with finitely many, say left, ideals is left Artinian. In 

particular, a finite ring (e.g., Z/nZ) is left and right Artinian. 

 Let k be a field. Then              is Artinian for every positive 

integer n. 

 Similarly,                                     

      is an Artinian ring with maximal ideal       

 If I is a nonzero ideal of a Dedekind domain A, then     is 

a principal Artinian ring.  

 For each    , the full matrix ring       over a left Artinian 

(resp. left Noetherian) ring R is left Artinian (resp. left 

Noetherian).  

The ring of integers   is a Noetherian ring but is not Artinian. 

1.2.2 Modules Over Artinian Rings 
Let M be a left module over a left Artinian ring. Then the following are 

equivalent (Hopkins' theorem):                           

 (i) M is finitely generated  

(ii) M has finite length (i.e., has composition series, 

(iii) M is Noetherian, 

 (iv) M is Artinian 

Commutative Artinian Rings 

Let A be a commutative Noetherian ring with unity. Then the following 

are equivalent. 

 A is Artinian. 

 A is a finite product of commutative Artinian local rings.  

 A / nil(A) is a semisimple ring, where nil(A) is the nilradical of A.  

 Every finitely generated module over A has finite length.  

 A has Krull dimension zero. (In particular, the nilradical is the 

Jacobson radical since prime ideals are maximal.) 

       is finite and discrete. 
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       is discrete.  

Let k be a field and A finitely generated k-algebra. Then A is Artinian if 

and only if A is finitely generated as k-module. 

An Artinian local ring is complete. A quotient and localization of an 

Artinian ring is Artinian. 

1.2.3 Simple Artinian Ring 

A simple Artinian ring A is a matrix ring over a division ring. 

Indeed, let I be a minimal (nonzero) right ideal of A. Then, since    is a 

two-sided ideal,      since A is simple. Thus, we can choose      so 

that            . Assume k is minimal with respect that property. 

Consider the map of right A-modules: 

{
                                                    
                     

 

It is surjective. If it is not injective, then, say,             

     with nonzero   . Then, by the minimality of I, we have:      . 

It follows: 

         ⊂           , 

which contradicts the minimality of k. Hence,        and thus   

                   

 

Counter Example 

The article presently claims that R is Artinian iff R/rad(R) is a direct 

product of finitely many fields. This is false; to construct a 

counterexample, let k be a field, and let k[x1, x2, x3, ...] be a polynomial 

ring over k in infinitely many indeterminates. Let J be the ideal (x1) + 

(x1, x2)
2
 + (x1, x2, x3)

3
 + ..., and let R = k[x1, x2, x3, ...]/J. 

R is clearly not Noetherian: (x1), (x1, x2), (x1, x2, x3), ... is an infinite 

ascending chain of ideals. Nor is R Artinian: (x1), (x1x2), (x1x2x3), ... is an 

infinite descending chain of ideals. But R/rad(R) is k: Every monomial 

in x1, x2, ... is nilpotent by the definition of J, hence every polynomial is 

nilpotent, and so rad(R) = (x1, x2, x3, ...). 

1. Prove that every prime ideal in A is maximal 
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2. Prove that A has only finitely many prime ideals 

3. Prove that rad(A) is nilpotent (obviously it contains only nilpotent 

elements; show that rad(A)
k
 = 0 for some k) 

4. Prove the following lemma: if M1, ..., Mn are maximal ideals (in 

some ring R) whose product is zero, then R is Noetherian if and 

only if it is Artinian (look at the successive quotients in the chain 

of partial products of the Mi). 

5. Thus A Artinian implies A Noetherian and A / rad(A) is a product 

of finitely many fields. Conversely. the lemma shows that such a 

ring is automatically Artinian. 

1.2.4 Artin Algebra 

In algebra, an Artin algebra is an algebra Λ over a commutative Artin 

ring R that is a finitely generated R-module. They are named after Emil 

Artin. 

Every Artin algebra is an Artin ring. 

  Dual and transpose 

There are several different dualities taking finitely generated modules 

over Λ to modules over the opposite algebra Λ
op

. 

 If M is a left Λ module then the right Λ-module M
*
 is defined to 

be HomΛ(M,Λ). 

 The dual D(M) of a left Λ-module M is the right Λ-

module D(M) = HomR(M,J), where J is the dualizing module 

of R, equal to the sum of the injective envelopes of the non-

isomorphic simple R-modules or equivalently the injective 

envelope of R/rad R. The dual of a left module over Λ does not 

depend on the choice of R (up to isomorphism). 

 The transpose Tr(M) of a left Λ-module M is a right Λ-module 

defined to be the cokernel of the map Q
*
 → P

*
, 

where P → Q → M → 0 is a minimal projective presentation 

of M. 

 

 Artinian ideal 
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In abstract algebra, an Artinian ideal, named after Emil Artin, is 

encountered in ring theory, in particular, with polynomial rings. 

Given a polynomial ring R = k[X1, ... Xn] where k is some field, an 

Artinian ideal is an ideal I in R for which the Krull dimension of the 

quotient ring R/I is 0. Also, less precisely, one can think of an Artinian 

ideal as one that has at least each indeterminate in R raised to a power 

greater than 0 as a generator. 

If an ideal is not Artinian, one can take the Artinian closure of it as 

follows. First, take the least common multiple of the generators of the 

ideal. Second, add to the generating set of the ideal each indeterminate of 

the LCM with its power increased by 1 if the power is not 0 to begin 

with. An example is below. 

 Examples 

Let    ⌈     ⌉, and let   (        )   

                     and               . Here,   and   are 

Artinian ideals, but   is not because in    , the indeterminate   does not 

appear alone to a power as a generator. 

To take the Artinian closure of  ,  ̂, we find the LCM of the generators 

of  , which is         . Then, we add the generators      , 

and    to  , and reduce. Thus, we have ,  ̂                which is 

Artinian. 

Check In Progress-I 

Q. 1 Define Artin Algebra. 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  .. . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . 

. . . . . . . .  . . . . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . 

. . . . . . . .  . . . . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . 

. . . . . . . .  . . . . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . 

. . . . . . . .  . . .  

Q. 2 Define Modulus over Artin Ring. 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . .  

. . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . .  . . .  
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. . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . .  . . .  

. . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . .  . . .  

. . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . .  . . .  

 

1.3 SERIAL MODULE 

In abstract algebra, a uniserial module M is a module over a ring R, 

whose submodules are totally ordered by inclusion. This means simply 

that for any two submodules N1 and N2 of M, either          ⊆

   or   ⊆   . A module is called a serial module if it is a direct sum 

of uniserial modules. A ring R is called a right uniserial ring if it is 

uniserial as a right module over itself, and likewise called a right serial 

ring if it is a right serial module over itself. Left uniserial and left serial 

rings are defined in an analogous way, and are in general distinct from 

their right counterparts. 

An easy motivational example is the quotient ring      for any 

integer    . This ring is always serial, and is uniserial when n is 

a prime power. 

The term uniserial has been used differently from the above definition: 

for clarification . 

A partial alphabetical list of important contributors to the theory of serial 

rings includes the mathematicians Keizo Asano, I. S. Cohen, P.M. Cohn, 

Yu. Drozd, D. Eisenbud, A. Facchini, A.W. Goldie, Phillip Griffith, I. 

Kaplansky, V.V Kirichenko, G. Köthe, H. Kuppisch, I. Murase, T. 

Nakayama, P. Příhoda, G. Puninski, and R. Warfield. 

Following the common ring theoretic convention, if a left/right 

dependent condition is given without mention of a side (for example, 

uniserial, serial, Artinian, Noetherian) then it is assumed the condition 

holds on both the left and right. Unless otherwise specified, each ring in 

this article is a ring with unity, and each module is unital 
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1.3.1 Properties of Uniserial And Serial   Rings And 

Modules 

It is immediate that in a uniserial R-module M, all submodules 

except M and 0 are simultaneously essential and superfluous. If M has 

a maximal submodule, then M is a local module. M is also clearly 

a uniform moduleand thus is directly indecomposable. It is also easy to 

see that every finitely generated submodule of M can be generated by a 

single element, and so M is a Bézout module. 

It is known that the endomorphism ring EndR(M) is a semilocal 

ring which is very close to a local ring in the sense that EndR(M) has at 

most two maximal right ideals. If M is required to be Artinian or 

Noetherian, then EndR(M) is a local ring. 

Since rings with unity always have a maximal right ideal, a right 

uniserial ring is necessarily local. As noted before, a finitely generated 

right ideal can be generated by a single element, and so right uniserial 

rings are right Bézout rings. A right serial ring R necessarily factors in 

the form       
     where each ei is an idempotent element and eiR is 

a local, uniserial module. This indicates that R is also a semiperfect ring, 

which is a stronger condition than being a semilocal ring. 

Köthe showed that the modules of Artinian principal ideal rings (which 

are a special case of serial rings) are direct sums of cyclic submodules. 

Later, Cohen and Kaplansky determined that a commutative ring R has 

this property for its modules if and only if R is an Artinian principal ideal 

ring. Nakayama showed that Artinian serial rings have this property on 

their modules, and that the converse is not true 

The most general result, perhaps, on the modules of a serial ring is 

attributed to Drozd and Warfield: it states that every finitely 

presented module over a serial ring is a direct sum of cyclic uniserial 

submodules (and hence is serial). If additionally the ring is assumed to be 

Noetherian, the finitely presented and finitely generated modules 

coincide, and so all finitely generated modules are serial. 

Being right serial is preserved under direct products of rings and 

modules, and preserved under quotients of rings. Being uniserial is 

preserved for quotients of rings and modules, but never for products. A 
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direct summand of a serial module is not necessarily serial, as was 

proved by Puninski, but direct summands of finite direct sums of 

uniserial modules are serial modules 

 Examples 

Any simple module is trivially uniserial, and likewise semisimple 

modules are serial modules. 

Many examples of serial rings can be gleaned from the structure sections 

above. Every valuation ring is a uniserial ring, and all Artinian principal 

ideal rings are serial rings, as is illustrated by semisimple rings. 

More exotic examples include the upper triangular matrices over a 

division ring Tn(D), and the group ring      for some finite field of 

prime characteristic p and group G having a cyclic normal p-Sylow 

subgroup. 

 Structure 

This section will deal mainly with Noetherian serial rings and their 

subclass, Artinian serial rings. In general, rings are first broken down 

into indecomposable rings. Once the structure of these rings are known, 

the decomposable rings are direct products of the indecomposable ones. 

Also, for semiperfect rings such as serial rings, the basic ring is Morita 

equivalent to the original ring. Thus if R is a serial ring with basic ring B, 

and the structure of B is known, the theory of Morita equivalence gives 

that           where P is some finitely generated progenerator B. 

This is why the results are phrased in terms of indecomposable, basic 

rings. 

In 1975, Kirichenko and Warfield independently and simultaneously 

published analyses of the structure of Noetherian, non-Artinian serial 

rings. The results were the same however the methods they used were 

very different from each other. The study 

of hereditary, Noetherian, prime rings, as well as quivers defined on 

serial rings were important tools. The core result states that a right 

Noetherian, non-Artinian, basic, indecomposable serial ring can be 

described as a type of matrix ring over a Noetherian, uniserial domain V, 

whose Jacobson radical J(V) is nonzero. This matrix ring is a subring of 



Notes 

23 

Mn(V) for some n, and consists of matrices with entries from V on and 

above the diagonal, and entries from J(V) below. 

Artinian serial ring structure is classified in cases depending on the 

quiver structure. It turns out that the quiver structure for a basic, 

indecomposable, Artinian serial ring is always a circle or a line. In the 

case of the line quiver, the ring is isomorphic to the upper triangular 

matrices over a division ring (note the similarity to the structure of 

Noetherian serial rings in the preceding paragraph). A complete 

description of structure in the case of a circle quiver is beyond the scope 

of this article, but the complete description can be found in (Puninski 

2001). To paraphrase the result as it appears there: A basic Artinian serial 

ring whose quiver is a circle is a homomorphic image of a "blow-up" of a 

basic, indecomposable, serial quasi-Frobenius ring. 

1.3.2 A Decomposition Uniqueness Property 

Two modules U and V are said to have the same monogeny class, 

denoted [U]m=[V]m, if there exists a monomorphism     and a 

monomorphism     . The dual notion can be defined: the modules are 

said to have the same epigeny class, denoted     =    , if there exists an 

epimorphism      and an epimorphism     . 

The following weak form of the Krull-Schmidt theorem holds. 

Let U1,... Un, V1, ..., Vt be n+t non-zero uniserial right modules over a 

ring R. Then the direct sums         and         are 

isomorphic R-modules if and only if n=t and there exist two 

permutations   and   of 1,2,...,n such 

that      =[     ] 
  and      =[     ] 

 for every i=1,2,..., n. 

This result, due to Facchini, has been extended to infinite direct sums of 

uniserial modules by Příhoda in 2006. This extension involves the so-

called quasismall uniserial modules. These modules were defined by 

Nguyen Viet Dung and Facchini, and their existence was proved by 

Puninski. The weak form of the Krull-Schmidt Theorem holds not only 

for uniserial modules, but also for several other classes of modules 

(biuniform modules, cyclically presented modules over serial rings, 
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kernels of morphisms between indecomposable injective modules, 

couniformly presented modules.) 

Notes on alternate, similar and related terms 

Right uniserial rings can also be referred to as right chain rings (Faith 

1999) or right valuation rings. This latter term alludes to valuation rings, 

which are by definition commutative, uniserial domains. By the same 

token, uniserial modules have been called chain modules, and serial 

modules semichain modules. The notion of a catenary ring has "chain" as 

its namesake, but it is in general not related to chain rings. 

In the 1930s, Gottfried Köthe and Keizo Asano introduced the 

term Einreihig (literally "one-series") during investigations of rings over 

which all modules are direct sums of cyclic submodules (Köthe 1935). 

For this reason, uniserial was used to mean "Artinian principal ideal 

ring" even as recently as the 1970s. Köthe's paper also required a 

uniserial ring to have a unique composition series, which not only forces 

the right and left ideals to be linearly ordered, but also requires that there 

be only finitely many ideals in the chains of left and right ideals. Because 

of this historical precedent, some authors include the Artinian condition 

or finite composition length condition in their definitions of uniserial 

modules and rings. 

Expanding on Köthe's work, Tadashi Nakayama used the 

term generalized uniserial ring (Nakayama 1941) to refer to an Artinian 

serial ring. Nakayama showed that all modules over such rings are serial. 

Artinian serial rings are sometimes called Nakayama algebras, and they 

have a well-developed module theory. 

Warfield used the term homogeneously serial module for a serial module 

with the additional property that for any two finitely generated 

submodules A and B,               where J(-) denotes the Jacobson 

radical of the module (Warfield 1975). In a module with finite 

composition length, this has the effect of forcing the composition factors 

to be isomorphic, hence the "homogeneous" adjective. It turns out that a 

serial ring Ris a finite direct sum of homogeneously serial right ideals if 

and only if R is isomorphic to a full nxn matrix ring over a local serial 

ring. Such rings are also known as primary decomposable serial rings  
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1.3.3 Perfect Ring 

In the area of abstract algebra known as ring theory, a left perfect ring is 

a type of ring in which all left modules have projective covers. The right 

case is defined by analogy, and the condition is not left-right symmetric; 

that is, there exist rings which are perfect on one side but not the other. 

Perfect rings were introduced in (Bass 1960). 

A semiperfect ring is a ring over which every finitely generated left 

module has a projective cover. This property is left-right symmetric. 

Definitions 

The following equivalent definitions of a left perfect ring R are found in  

 Every left R module has a projective cover. 

 R/J(R) is semisimple and J(R) is left T-nilpotent (that is, for every 

infinite sequence of elements of J(R) there is an n such that the 

product of first n terms are zero), where J(R) is the Jacobson 

radical of R. 

 (Bass' Theorem P) R satisfies the descending chain condition on 

principal right ideals. (There is no mistake; this condition 

on right principal ideals is equivalent to the ring 

being left perfect.) 

 Every flat left R-module is projective. 

 R/J(R) is semisimple and every non-zero left R module contains 

a maximal submodule. 

 R contains no infinite orthogonal set of idempotents, and every 

non-zero right R module contains a minimal submodule. 

Examples 

 Right or left Artinian rings, and semiprimary rings are known to 

 The following is an example (due to Bass) of a local ring which is 

right but not left perfect. Let F be a field, and consider a certain 

ring of infinite matrices over F. 

Take the set of infinite matrices with entries indexed by ℕ× ℕ, 

and which have only finitely many nonzero entries, all of them 
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above the diagonal, and denote this set by  . Also take the 

matrix   with all 1's on the diagonal, and form the set 

  {             } 

It can be shown that R is a ring with identity, whose Jacobson 

radical is J. Furthermore R/J is a field, so that R is local, and R is 

right but not left perfect. 

Properties 

For a left perfect ring R: 

 From the equivalences above, every left R module has a maximal 

submodule and a projective cover, and the flat left R modules 

coincide with the projective left modules. 

 An analogue of the Baer's criterion holds for projective modules 

1.3.4 Semi-Perfect Ring 

Definition 

Let R be ring. Then R is semiperfect if any of the following equivalent 

conditions hold: 

 R/J(R) is semisimple and idempotents lift modulo J(R), where 

J(R) is the Jacobson radical of R. 

 R has a complete orthogonal set e1, ..., en of idempotents with 

each ei R ei a local ring. 

 Every simple left (right) R-module has a projective cover. 

 Every finitely generated left (right) R-module has a projective 

cover. 

 The category of finitely generated projective  -modules is Krull-

Schmidt. 

 

Examples 

Examples of semiperfect rings include: 

 Left (right) perfect rings. 

 Local rings. 

 Left (right) Artinian rings. 
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 Finite dimensional k-algebras 

      Properties 

 Since a ring R is semiperfect iff every simple left R-module has a     

projective cover, every ring Morita equivalent to a semiperfect ring is 

also semiperfect 

 

Check In Progress-II 

Q. 1 Let I be an ideal in a Noetherian ring R; let M be a finitely 

generated R-module and let N a submodule of M. Then there exists an 

integer k ≥ 1 so that, for n ≥ k, 

          (       ) 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . .  
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Q. 2 State and Prove Krull‘s Principal Ideal Theorem . 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . .  

. . .  . .  . . . . .  . . . . . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . .  . . .  
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Q. 3 Prove that If M is artinian, so is any submodule and quotient module 

of M. 

Conversely, if N ⊆ M is such that N and M/N are artinian, then so is 

M. 
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1.4 GORENSTEIN RING 

n commutative algebra, a Gorenstein local ring is a 

commutative Noetherian local ring R with finite injective dimension as 

an R-module. There are many equivalent conditions, some of them listed 

below, often saying that a Gorenstein ring is self-dual in some sense. 

Gorenstein rings were introduced by Grothendieck in his 1961 seminar 

(published in (Hartshorne 1967)). The name comes from a duality 

property of singular plane curves studied by Gorenstein (1952) (who was 

fond of claiming that he did not understand the definition of a Gorenstein 

ring
[citation needed]

). The zero-dimensional case had been studied 

by Macaulay (1934). Serre (1961) and Bass (1963) publicized the 

concept of Gorenstein rings. 

Frobenius rings are noncommutative analogs of zero-dimensional 

Gorenstein rings. Gorenstein schemes are the geometric version of 

Gorenstein rings. 

For Noetherian local rings, there is the following chain of inclusions. 

Universally catenary rings ⊃ Cohen–Macaulay rings ⊃ Gorenstein 

rings ⊃ complete intersection rings ⊃ regular local rings 

Definitions 

A Gorenstein ring is a commutative Noetherian ring such that 

each localization at a prime ideal is a Gorenstein local ring, as defined 

above. A Gorenstein ring is in particular Cohen–Macaulay. 

One elementary characterization is: a Noetherian local 

ring R of dimension zero (equivalently, with R of finite length as an R-

module) is Gorenstein if and only if HomR(k, R) has dimension 1 as a k-

vector space, where kis the residue field of R. Equivalently, R has 

simple socle as an R-module. More generally, a Noetherian local 

ring R is Gorenstein if and only if there is a regular sequence a1,...,an in 

the maximal ideal of R such that the quotient ring R/( a1,...,an) is 

Gorenstein of dimension zero. 

For example, if R is a commutative graded algebra over a field k such 

that R has finite dimension as a k-vector space, R = k   R1   ...   Rm, 
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then R is Gorenstein if and only if it satisfies Poincaré duality, meaning 

that the top graded piece Rm has dimension 1 and the 

product Ra × Rm−a → Rm is a perfect pairing for every a.  

Another interpretation of the Gorenstein property as a type of duality, for 

not necessarily graded rings, is: for a field F, a commutative F-

algebra R of finite dimension as an F-vector space (hence of dimension 

zero as a ring) is Gorenstein if and only if there is an F-linear 

map e: R → F such that the symmetric bilinear form (x, y) := e(xy) 

on R (as an F-vector space) is nondegenerate.  

For a commutative Noetherian local ring (R, m, k) of Krull 

dimension n, the following are equivalent: 

 R has finite injective dimension as an R-module; 

 R has injective dimension n as an R-module; 

 The Ext group     
         for i ≠ n while     

         

     
         for some i > n; 

     
         for all i < n and     

         

 R is an n-dimensional Gorenstein ring. 

A (not necessarily commutative) ring R is called Gorenstein 

if R has finite injective dimension both as a left R-module and as 

a right R-module. If R is a local ring, R is said to be a local 

Gorenstein ring. 

Examples 

 Every local complete intersection ring, in particular every regular 

local ring, is Gorenstein. 

 The ring R = k[x,y,z]/(x
2
, y

2
, xz, yz, z

2
−xy) is a 0-dimensional 

Gorenstein ring that is not a complete intersection ring. In more 

detail: a basis for R as a k-vector space is given 

by: {          } R is Gorenstein because the socle has 

dimension 1 as a k-vector space, spanned by z
2
. Alternatively, 

one can observe that R satisfies Poincaré duality when it is 

viewed as a graded ring with x, y, z all of the same degree. 
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Finally. Ris not a complete intersection because it has 3 

generators and a minimal set of 5 (not 3) relations. 

 The ring R = k[x,y]/(x
2
, y

2
, xy) is a 0-dimensional Cohen–

Macaulay ring that is not a Gorenstein ring. In more detail: a 

basis for R as a k-vector space is given by: {     }  R is not 

Gorenstein because the socle has dimension 2 (not 1) as a k-

vector space, spanned by x and y. 

Properties 

 A Noetherian local ring is Gorenstein if and only if 

its completion is Gorenstein.  

 The canonical module of a Gorenstein local ring R is isomorphic 

to R. In geometric terms, it follows that the standard dualizing 

complex of a Gorenstein scheme X over a field is simply a line 

bundle (viewed as a complex in degree −dim(X)); this line 

bundle is called the canonical bundle of X. Using the canonical 

bundle, Serre duality takes the same form for Gorenstein 

schemes as in the smooth case. 

 Let (R, m, k) be a Noetherian local ring of embedding 

codimension c, meaning that c = dimk(m/m
2
) − dim(R). In 

geometric terms, this holds for a local ring of a subscheme of 

codimension c in a regular scheme. For cat most 2, Serre showed 

that R is Gorenstein if and only if it is a complete 

intersection.
[9]

 There is also a structure theorem for Gorenstein 

rings of codimension 3 in terms of the Pfaffians of a skew-

symmetric matrix, by Buchsbaum and Eisenbud. 

 Artin–Rees lemma 

 In mathematics, the Artin–Rees lemma is a basic result 

about modules over a Noetherian ring, along with results such as 

the Hilbert basis theorem. It was proved in the 1950s in independent 

works by the mathematicians Emil Artin and David Rees;
[1][2]

 a special 

case was known to Oscar Zariski prior to their work. 

Statement 
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Let I be an ideal in a Noetherian ring R; let M be a finitely 

generated R-module and let N a submodule of M. Then there exists 

an integer k ≥ 1 so that, for n ≥ k, 

          ((   )   ) 

Proof 

The lemma immediately follows from the fact that R is Noetherian once 

necessary notions and notations are set up.  

For any ring R and an ideal I in R, we set         
    (B for blow-

up.) We say a decreasing sequence of submodules     ⊃   ⊃

  ⊃   is an I-filtration if    ⊂     ; moreover, it is stable 

if          for sufficiently large n. If M is given an I-filtration, we 

set         
   ; it is a graded module over    . 

Now, let M be a R-module with the I-filtration    by finitely 

generated R-modules. We make an observation 

     is a finitely generated module over     if and only if the 

filtration is I-stable. 

Indeed, if the filtration is I-stable, then     is generated by the first   

  terms        and those terms are finitely generated; 

thus,      is finitely generated. Conversely, if it is finitely generated, 

say, by some homogeneous elements in     
   , then, for    , 

each f in    can be written as 

  ∑                

with the generators    in       . That is,         . 

We can now prove the lemma, assuming R is Noetherian. Let    

   . Then    are an I-stable filtration. Thus, by the 

observation,       is finitely generated over    . But           is a 

Noetherian ring since R is. (The ring       is called the Rees algebra.) 

Thus,        is a Noetherian module and any submodule is finitely 

generated over    .; in particular,     is finitely generated when N is 

given the induced filtration; i.e.,        . Then the induced 

filtration is I-stable again by the observation. 
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 1.4.1 Proof Of Krull's Intersection Theorem 

Besides the use in completion of a ring, a typical application of the 

lemma is the proof of the Krull's intersection theorem, which 

says: ⋂      
    for a proper ideal I in a commutative Noetherian local 

ring. By the lemma applied to the intersection  , we find k such that 

for    , 

                

But then      and thus     by Nakayama. 

Krull's principal ideal theorem 

In commutative algebra, Krull's principal ideal theorem, named 

after Wolfgang Krull (1899–1971), gives a bound on the height of 

a principal ideal in a commutative Noetherian ring. The theorem is 

sometimes referred to by its German name, Krulls 

Hauptidealsatz (Satz meaning "proposition" or "theorem"). 

Precisely, if R is a Noetherian ring and I is a principal, proper ideal of R, 

then each minimal prime ideal over I has height at most one. 

This theorem can be generalized to ideals that are not principal, and the 

result is often called Krull's height theorem. This says that if R is a 

Noetherian ring and I is a proper ideal generated by n elements of R, then 

each minimal prime over I has height at most n. 

The principal ideal theorem and the generalization, the height theorem, 

both follow from the fundamental theorem of dimension theory in 

commutative algebra (see also below for the direct proofs). 

Bourbaki's Commutative Algebra gives a direct proof. 

Kaplansky's Commutative ring includes a proof due to David Rees. 

 

1.4.2 Proof of the principal ideal theorem 

Let A be a Noetherian ring, x an element of it and   a minimal prime 

over x. Replacing A by the localization   , we can assume A is local 

with the maximal ideal  . Let  ⊆   be a strictly smaller prime ideal and 
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let            , which is a  -primary ideal called the n-th symbolic 

power of  . It forms a descending chain of ideals  ⊃  ⊃     ⊃     ⊃

 . Thus, there is the descending chain of ideals              in the 

ring  ̅       . Now, the radical √    is the intersection of all minimal 

prime ideals containg  ;   is among them. But   is a unique maximal 

ideal and thus √     . Since      contains some power of its radical, 

it follows that  ̅ is an Artinian ring and thus the chain          

    stabilizes and so there is some n such that                 

   . It implies: 

                 , 

from the fact      is  -primary (if   is in     , then     

   with          and    . Since  . is minimal over   ,     and 

so         implies   is in     .) Now, quotienting out both sides 

by        yields 
    

                     . Then, by Nakayama's lemma, 

letting      , we get that both sides are zero and            , 

thus                . Using Nakayama's lemma again,        

  and    is an Artinian ring; thus, the height of   is zero.    

 

1.4.3 Proof Of The Height Theorem 

Krull‘s height theorem can be proved as a consequence of the principal 

ideal theorem by induction on the number of elements. Let          be 

elements in  ,   a minimal prime over (         and q ⊆    a prime 

ideal such that there is no prime strictly between them. Replacing    by 

the localization    we can assume        is a local ring; note we then 

have   √(        ). By minimality,    cannot contain all the    ; 

relabeling the subscripts, say,      . Since every prime ideal 

containing        is between   and  , √         and thus we can 

write for each    , 
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with      and     . Now we consider the ring  ̅  
 

       
 and the 

corresponding chain  ̅ ⊂  ̅ in it. If  ̅ is a minimal prime over   ̅̅̅, 

then    contains      
       

   and thus     ; that is to say,  ̅   is a 

minimal prime over   ̅̅̅    and so, by Krull‘s principal ideal theorem,  ̅  is 

a minimal prime (over zero);   is a minimal prime over (          . By 

inductive hypothesis,           and thus          

1.5 SOME THEOREM FOR EXERCISE 

Theorem. For an R-module M, the following are 

equivalent: 

 any non-empty collection Σ of submodules of M has a maximal 

element N (i.e. N   Σ, and whenever M‘   Σ we have M‘ ⊆ N); 

 for any increasing sequence  of submodules 

of M, there is an n such that  We say 

that the sequence is eventually constant. 

Proof 

⇒: assume the first property; given , let Σ be the 

collection of all Mn. This has a maximal element, say Mn Σ. Being 

maximal, all subsequent terms must be equal to Mn. 

⇐ : suppose Σ is non-empty and has no maximal element; pick M0 Σ; 

this is not maximal, so we can pick M1 Σ which properly contains M0; 

again this is not maximal, so pick M2 Σ properly containing M1; 

repeat. ♦ 

Definition. A module M which satisfies the two properties in the above 

theorem is said to be (left) noetherian. A ring is (left) noetherian if it is 

noetherian as a module over itself. 

The following result is a basic property of noetherian modules. 

Theorem. 

 If M is noetherian, so is any submodule and 

quotient module of M. 
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 Conversely, if N ⊆ M is such that N and M/N are 

noetherian, then so is M. 

Proof 

First statement: let N ⊆ M. Any increasing sequence of submodules 

of N is also an increasing sequence of submodules of M, so it must 

terminate. Similarly, any increasing sequence of submodules 

of M/N corresponds to a sequence of submodules of Mcontaining N, so it 

must terminate. 

Second statement: let (Mn) be an increasing sequence of submodules 

of M. Then (N ∩ Mn) is an increasing sequence of submodules of N so it 

is eventually constant. Also, ((N+Mn)/N) is an increasing sequence of 

submodules of M/N so it is eventually constant. So for large n, we have: 

 

This implies Mn = Mn+1.  

So (Mn) is eventually constant. ♦ 

Corollary. 

 If M, N are noetherian, so is their direct sum M   N. 

 If M, N are noetherian submodules of P, so is M+N. 

 If M is a finitely generated module over a noetherian 

ring, then M is noetherian. 

Proof 

Indeed, M ⊆ M N is a submodule whose quotient is isomorphic 

to N. Since M and N are noetherian, so is M N. The second statement 

follows from that M+N is a quotient of M N. 

For the third statement, let M be generated by . Then M is a 

sum of Rxi, as submodules of M. Each Rxi is a quotient of the 

form R/I for some left ideal I ⊂ R; since Ris noetherian, so is R/I, 

and M. ♦ 

Examples 

1. A simple module is noetherian since it has only two submodules. Thus 

a finitely generated semisimple module is noetherian. [#] In particular, a 

semisimple ring is noetherian. 
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[#] Subtle point: show that a finitely generated semisimple 

module M must be a direct sum of finitely many simple 

submodules. Warning: even if M is generated by k elements, it is not true 

that M is a direct sum of k or less simple submodules. E.g. as Z-

module, Z/6 is generated by 1 element but Z/6 = Z/2   Z/3. 

2. The Z-module Z is noetherian, i.e. Z is a noetherian ring. Thus, a 

finitely generated abelian group is a noetherian Z-module. 

3. The Z-module Q is not noetherian, for we have an infinite increasing 

sequence Z ⊂ (1/2)Z ⊂ (1/4)Z ⊂ … . This example also shows 

that  is not noetherian. Since Z is noetherian, it 

implies M/Z is non-noetherian. 

4. The Q-module Q is obviously noetherian though. More generally, all 

division rings are noetherian. 

5. Z[√2] is a finitely generated Z-module, so it is noetherian as a Z-

module. This implies it is a noetherian ring, since every (left) ideal 

of Z[√2] is also a Z-module. 

6. The infinite polynomial ring  is a 

non-noetherian ring since the sequence of 

ideals  never terminates. 

Artinian Modules and Rings 

Reversing the direction of inclusion in the definition of noetherian rings, 

we get a similar concept. We will merely state the results since the proofs 

are identical to the above. 

Theorem. For an R-module M, the following are equivalent: 

 any non-empty collection Σ of submodules of M has a 

minimal element N (i.e. N   Σ, and whenever M‘   Σ we have M‘ 

⊇ N); 

 for any decreasing sequence  of submodules 

of M, there is an n such that  

Definition. A module which satisfies the above two properties is said to 

be (left) artinian. A ring is (left) artinian if it is artinian as a module over 

itself. 
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Again we have the following basic property. 

Theorem. 

 If M is artinian, so is any submodule and quotient module of M. 

 Conversely, if N ⊆ M is such that N and M/N are artinian, then so is 

M. 

Corollary. 

 If M, N are artinian, so is their direct sum M   N. 

 If M, N are artinian submodules of P, so is M+N. 

 A finitely generated module over an artinian ring is also artinian. 

Examples 

1. A simple module is artinian since it has only two submodules. Thus, a 

finitely generated semisimple module is artinian. In particular a 

semisimple ring is noetherian and artinian! 

2. The Z-module Z is not artinian since it contains an infinite decreasing 

sequence of left ideals Z ⊃ 2Z ⊃ 4Z ⊃ … . 

3. The module  is not artinian since it contains Z; 

however, M/Z is artinian! The proof is left as an exercise. 

Easy Exercises 

Prove that if R is a noetherian (resp. artinian) ring, then for any two-

sided ideal I, R/I is also noetherian (resp. artinian). 

Prove that if R and S are noetherian (resp. artinian) rings, so is R × S. 

1.6 LET US SUM UP  

1. Noetherian ring: 

A ring is called left (respectively, right) Noetherian if it does not contain 

an infinite ascending chain of left (respectively, right) ideals. In this case, 

the ring in question is said to satisfy the ascending chain 

condition on left (respectively, right) ideals. 

A ring is said to be Noetherian if it is both left and right Noetherian. For 

a ring , the following are equivalent: 
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a.  satisfies the ascending chain condition on ideals (i.e., is Noetherian). 

b. Every ideal of  is finitely generated. 

c. Every set of ideals contains a maximal element. 

2.     Artinian ring: 

A ring is called left (respectively right) Artinian if it does not contain an 

infinite descending chain of left (resp. right) ideals. In this case the ring 

in question is said to satisfy the descending chain 

condition on left (resp. right) ideals. 

A ring is called Artinian if it is both left and right Artinian. 

Suppose that R is a ring and 1R is its multiplicative identity. A left R-

module M consists of an abelian group (M, +) and an 

operation ⋅ : R × M → M such that for all r, s in R and x, y in M, we have 

a. r.(x+y)=r.x+r.y 

b. (r+s).x=r.x+s.x 

c. (rs).x=r.(s.x) 

d. IR.x=x 

3       Gorenstein Ring: 

An algebraic ring which appears in treatments of duality in algebraic 

geometry. Let  be a local Artinian ring with  its maximal ideal. 

Then  is a Gorenstein ring if the annihilator of  has dimension 1 as 

a vector space over . 

4         Krull–Akizuki theorem: A be a one-

dimensional reduced noetherian ring, K its total ring of fractions. If B is a 

subring of a finite extension L of K containing A and is not a field, 

then B is a one-dimensional noetherian ring. Furthermore, for every 

nonzero ideal I of B,     is finite over A. 
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5      Let I be an ideal in a Noetherian ring R; let M be a finitely 

generated R-module and let N a submodule of M. Then there exists an 

integer k ≥ 1 so that, for n ≥ k, 

          (       ) 

6       For an R-module M, the following are equivalent: 

any non-empty collection Σ of submodules of M has a minimal element 

N (i.e. N   Σ, and whenever M‘   Σ we have M‘ ⊇ N); 

for any decreasing sequence  of submodules of 

M, there is an n such that  

7         Let M be a noetherian and artinian module. The following are 

equivalent for a module map f : M → M. 

f is bijective; 

f is injective; 

f is surjective.  

1.7 KEYWORD 

RING: A ring in the mathematical sense is a set S together with 

two binary operations. 

ARTINIAN: Artin ring 

MODULES: Representation of theory of Rings 

NOETHERIAN : That Certain Ascending or Descending sequences of 

subobjects must have finite length 

SUBMODULES : A Module Contained in a larger module, both over 

the same ring 

1.8 QUESTIONS FOR REVIEW 

Q. 1 If M is noetherian, so is any submodule and quotient module of M. 

Q 2 if N ⊆ M is such that N and M/N are noetherian, then so is M. 

Q 3 For an R-module M, the following are equivalent: 

any non-empty collection Σ of submodules of M has a maximal 

element N (i.e. N   Σ, and whenever M‘   Σ we have M‘ ⊆ N); 
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for any increasing sequence  of submodules 

of M, there is an n such that  We say 

that the sequence is eventually constant. 

 

1.9 ANSWER FOR CHECK IN 

PROGRESS 

Check In Progress-I 

Answer Q. 1 Check in Section 1.2.4 

      2 Check in Section 1.2.2 

Check In Progress-II 

Answer Q. 1 check in section 1.2.1 

Answer Q 2 Check in Section 1.1.3 

Answer Q. 3 Check in section 1.5 
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UNIT 2 - HELBERT BASIS THEOREM 
 

STRUCTURE 

2.0 Objective  

2.1Introduction 

2.1.1 Preliminaries 

2.1.2 On Ring Isomorphism 

2.1.3 Statement 

2.1.4 Proof 

2.2 Hilbert‘s Basis Theorem 

2.3 Cohen‘s Structure Theorem 

2.4 Let Us Sum Up 

2.5 Keyword 

2.6 Questions For Review 

2.7 Answer to check in Progress 

2.8  Suggestion Reading and References 

2.0 OBJECTIVE 

 Learn about Hilbert‘s Basis Theorem 

 Learn Cohen‘s Structure Theorem 

 Learn about isomorphism  

 Learn Complementable 

2.1 INTRODUCTION 

Hilbert's Basis Theorem is a result concerning Noetherian rings. It 

states that if  is a (not necessarily commutative) Noetherian ring, 
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then the ring of polynomials  is also a Noetherian 

ring. (The converse is evidently true as well.) 

2.1.1 Preliminaries 

One can prove the following propositions:  

(1) Let A, B be finite sequences and f be a function. Suppose rngA∪rng 

B ⊆dom f. Then there exist finite sequences f1, f2 such that f1 = f · A 

and f2 = f · B and f · (A a B) = f1 a f2.  

(2) For every bag b of 0 holds decomp b = hh∅, ∅ii. 

 (3) For all natural numbers i, j and for every bag b of j such that i ¬ j 

holds b↾i is an element of Bagsi.  

(4) Let i, j be sets, b1, b2 be bags of j, and b ′ 1 , b ′ 2 be bags of i. If b ′ 1 

= b1↾i and b ′ 2 = b2↾i and b1 divides b2, then b ′ 1 divides b ′ 2 . 

(5) Let i, j be sets, b1, b2 be bags of j, and b ′ 1 , b ′ 2 be bags of i. If b ′ 1 

= b1↾i and b ′ 2 = b2↾i, then (b1 −′ b2)↾i = b ′ 1 −′ b ′ 2 and (b1 + b2)↾i = 

b ′ 1 + b ′ 2 . Let n, k be natural numbers and let b be a bag of n. The 

functor b extended by k yields an element of Bags n + 1 and is defined as 

follows: (Def. 1) (b extended by k)↾n = b and (b extended by k)(n) = k. 

We now state two propositions:  

(6) For every natural number n holds EmptyBag n + 1 = EmptyBag n 

extended by 0. 

 (7) For every ordinal number n and for all bags b, b1 of n holds b1  rng 

divisors b iff b1 divides b. Let X be a set and let x be an element of X. 

The functorUnitBag x yields an element of Bags X and is defined as 

follows: 

UnitBag x = EmptyBag X +· (x, 1). Next we state four propositions:  

(8) For every non empty set X and for every element x of X holds 

support UnitBag x = {x}.  

(9) Let X be a non empty set and x be an element of X. Then (UnitBag 

x)(x) = 1 and for every element y of X such that x 6= y holds (UnitBag 

x)(y) = 0. 
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 (10) For every non empty set X and for all elements x1, x2 of X such 

that UnitBag x1 = UnitBag x2 holds x1 = x2.  

(11) Let X be a non empty ordinal number, x be an element of X, L be a 

unital non trivial non empty double loop structure, and e be a function 

from X into L. Then eval(UnitBagx,e) = e(x). 

Let X be a set, let x be an element of X, and let L be a unital non empty 

multiplicative loop with zero structure. The functor 1 1(x, L) yielding a 

Series of X, L is defined by: 

1(x,L) = 0 (X, L) +· (UnitBag x, 1L).  

One can prove the following propositions: 

(12) Let X be a set, L be a unital non trivial non empty double loop 

structure, and x be an element of X. Then (1 1(x,L))(UnitBag x) = 1L 

and for every bag b of X such that b 6= UnitBag x holds (1 1(x,L))(b) = 

0L.  

(13) Let X be a set, x be an element of X, and L be an add-associative 

right zeroed right complementableunital right distributive non trivial non 

empty double loop structure. Then Support 1 1(x, L) = {UnitBag x}. 

Let X be an ordinal number, let x be an element of X, and let L be an 

add-associative right zeroed right complementableunital right distributive 

non trivial non empty double loop structure. Observe that 1 1(x,L) is 

finite-Support. 

One can prove the following three propositions: 

(14) Let L be an add-associative right zeroed right complementableunital 

right distributive non trivial non empty double loop structure, X be a non 

empty set, and x1, x2 be elements of X. If 1 1(x1,L) = 1 1(x2,L), then x1 

= x2.  

(15) Let L be an add-associative right zeroed right complementable 

distributive non empty double loop structure, x be an element of the 

carrier of Polynom-Ring L, and p be a sequence of L. If x = p, then −x = 

−p. 
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 (16) Let L be an add-associative right zeroed right complementable 

distributive non empty double loop structure, x, y be elements of the 

carrier of Polynom-Ring L, and p, q be sequences of L. If x = p and y = 

q, then x − y = p − q. 

Let L be a right zeroed add-associative right complementableunital 

distributive non empty double loop structure and let I be a non empty 

subset of the carrier of Polynom-Ring L. The functorminlen I yields a 

non empty subset of I and is defined by: 

minlen I = {x; x ranges over elements of I: V x′ ,y′ : Polynomial of L (x ′ 

= x ∧ y ′   I ⇒len x ′ ¬ len y ′ )}.  

We now state the proposition 

(17) Let L be a right zeroed add-associative right complementableunital 

distributive non empty double loop structure, I be a non empty subset of 

the carrier of Polynom-Ring L, and i1, i2 be Polynomials of L. If i1 

 minlen I and i2   I, then i1   I and len i1 ¬ len i2. 

Let L be a right zeroed add-associative right complementableunital 

distributive non empty double loop structure, let n be a natural number, 

and let a be an element of the carrier of L. The functormonomial(a,n) 

yields a Polynomial of L and is defined as follows: 

For every natural number x holds if x = n, then (monomial(a,n))(x) = a 

and if x 6= n, then (monomial(a, n))(x) = 0L. 

The following four propositions are true:  

(18) Let L be a right zeroed add-associative right complementableunital 

distributive non empty double loop structure, n be a natural number, and 

a be an element of the carrier of L. Then if a 6= 0L, then 

lenmonomial(a,n) = n + 1 and if a = 0L, then len monomial(a,n) = 0 and 

len monomial(a,n) ¬ n + 1. 

 (19) Let L be a right zeroed add-associative right complementableunital 

distributive non empty double loop structure, n, x be natural numbers, a 

be an element of the carrier of L, and p be a Polynomial of L. Then 

(monomial(a,n) ∗ p)(x + n) = a · p(x).  
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(20) Let L be a right zeroed add-associative right complementableunital 

distributive non empty double loop structure, n, x be natural numbers, a 

be an element of the carrier of L, and p be a Polynomial of L. Then (p 

∗monomial(a,n))(x + n) = p(x) · a. 

(21) Let L be a right zeroed add-associative right complementableunital 

distributive non empty double loop structure and p, q be Polynomials of 

L. Then  

len(p ∗ q) ¬ (len p + len q) −′ 1. 

2.1.2 On Ring Isomorphism 

The following propositions are true:  

(22) Let R, S be non empty double loop structures, I be an ideal of R, and 

P be a map from R into S. If P is a ring isomorphism, then P ◦ I is an 

ideal of S.  

(23) Let R, S be add-associative right zeroed right complementable non 

empty double loop structures and f be a map from R into S. If f is a ring 

homomorphism, then f(0R) = 0S. 

 (24) Let R, S be add-associative right zeroed right complementable non 

empty double loop structures, F be a non empty subset of the carrier of 

R, G be a non empty subset of the carrier of S, P be a map from R into S, 

l1 be a linear combination of F, L1 be a linear combination of G, and E 

be a finite sequence of elements of [:the carrier of R, the carrier of R, the 

carrier of R :]. Suppose that 

(i) P is a ring homomorphism,  

(ii) len l1 = lenL1,  

(iii) E represents l1, and  

(iv) for every set i such that i dom L1 holds L1(i) = P((Ei)1)· P((Ei)2)· 

P((Ei)3). Then P( Pl1) = PL1 

(25) Let R, S be non empty double loop structures and P be a map from 

R into S. Suppose P is a ring isomorphism. Then there exists a map P1 

from S into R such that P1 is a ring isomorphism and P1 = P −1 . 
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(26) Let R, S be Abelian add-associative right zeroed right 

complementable associative distributive well unital non empty double 

loop structures, F be a non empty subset of the carrier of R, and P be a 

map from R into S. If P is a ring isomorphism, then P ◦F–ideal = (P ◦F)–

ideal.  

(27) Let R, S be Abelian add-associative right zeroed right 

complementable associative distributive well unital non empty double 

loop structures and P be a map from R into S. If P is a ring isomorphism 

and R is Noetherian, then S is Noetherian. 

(28) Let R be an add-associative right zeroed right complementable 

associative distributive well unital non trivial non empty double loop 

structure. Then there exists a map from R into Polynom-Ring(0,R) which 

is a ring isomorphism.  

(29) Let R be a right zeroed add-associative right complementableunital 

distributive non trivial non empty double loop structure, n be a natural 

number, b be a bag of n, p1 be a Polynomial of n, R, and F be a finite 

sequence of elements of the carrier of Polynom-Ring(n,R). Suppose p1 = 

PF. Then there exists a function g from the carrier of Polynom-Ring(n,R) 

into the carrier of R such that for every Polynomial p of n, R holds g(p) = 

p(b) and p1(b) = P(g · F). 

Let R be an Abelian add-associative right zeroed right complementable 

associative distributive well unital commutative non trivial non empty 

double loop structure and let n be a natural number. The 

functorupm(n,R) yielding a map from Polynom-Ring Polynom-

Ring(n,R) into Polynom-Ring(n+1,R) is defined by the condition. 

Let p1 be a Polynomial of Polynom-Ring(n,R), p2 be a Polynomial of n, 

R, p3 be a Polynomial of n + 1, R, and b be a bag of n + 1. If p3 = 

(upm(n,R))(p1) and p2 = p1(b(n)), then p3(b) = p2(b↾n). 

Let R be an Abelian add-associative right zeroed right complementable 

associative distributive well unital commutative non trivial non empty 

double loop structure and let n be a natural number. One can verify the 

following observations:  

∗upm(n,R) is additive,  
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∗upm(n,R) is multiplicative,  

∗upm(n,R) is unity-preserving, and  

∗upm(n,R) is one-to-one. 

Let R be an Abelian add-associative right zeroed right complementable 

associative distributive well unital commutative non trivial non empty 

double loop structure and let n be a natural number. The 

functormpu(n,R) yields a map from Polynom-Ring(n + 1,R) into 

Polynom-Ring Polynom-Ring(n,R) and is defined by the condition. 

Let p1 be a Polynomial of n + 1, R, p2 be a Polynomial of n, R, p3 be a 

Polynomial of Polynom-Ring(n,R), i be a natural number, and b be a bag 

of n. If p3 = (mpu(n,R))(p1) and p2 = p3(i), then p2(b) = p1(b extended 

by i) 

Next we state two propositions: 

(30) Let R be an Abelian add-associative right zeroed right 

complementable associative distributive well unital commutative non 

trivial non empty double loop structure, n be a natural number, and p be 

an element of the carrier of Polynom-Ring(n+1,R). Then 

(upm(n,R))((mpu(n,R))(p)) = p. 

(31) Let R be an Abelian add-associative right zeroed right 

complementable associative distributive well unital commutative non 

trivial non empty double loop structure and n be a natural number. Then 

there exists a map from Polynom-Ring Polynom-Ring(n,R) into 

Polynom-Ring(n+1,R) which is a ring isomorphism. 

Let R be a Noetherian Abelian add-associative right zeroed right 

complementable associative distributive well unital commutative non 

empty double loop structure. Observe that Polynom-Ring R is 

Noetherian. One can prove the following propositions: 

 (32) Let R be a Noetherian Abelian add-associative right zeroed right 

complementable associative distributive well unital commutative non 

empty double loop structure. Then Polynom-Ring R is Noetherian.  

(33) Let R be an Abelian add-associative right zeroed right 

complementable associative distributive well unital non trivial 
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commutative non empty double loop structure. Suppose R is Noetherian. 

Let n be a natural number. Then Polynom-Ring(n,R) is Noetherian. (34) 

Every field is Noetherian.  

(35) For every field F and for every natural number n holds Polynom-

Ring(n, F) is Noetherian.  

(36) Let R be an Abelian right zeroed add-associative right 

complementable well unital distributive associative commutative non 

trivial non empty double loop structure and X be an infinite ordinal 

number. Then Polynom-Ring(X,R) is non Noetherian. 

2.1.3 Statement 

If  is a ring, let  denote the ring of polynomials in the 

indeterminate  over . Hilbert proved that if  is "not too large", in the sense 

that if  is Noetherian, the same must be true for . Formally, 

Hilbert's Basis Theorem. Let R be a Noetherian ring.  

Then R[x] is a Noetherian ring 

Corollary. If   R[x] is a Noetherian ring, then R is a Noetherian ring. 

This can be translated into algebraic geometry as follows: 

every algebraic set over a field can be described as the set of common 

roots of finitely many polynomial equations. Hilbert (1890) proved the 

theorem (for the special case of polynomial rings over a field) in the 

course of his proof of finite generation of rings of invariants. 

Hilbert produced an innovative proof by contradiction 

using mathematical induction; his method does not give an algorithm to 

produce the finitely many basis polynomials for a given ideal: it only 

shows that they must exist. One can determine basis polynomials using 

the method of Gröbner bases. 

Note that  must be finite; if we adjoin infinitely many variables, then 

the ideal generated by these variables is not finitely generated. 

The theorem is named for David Hilbert, one of the great mathematicians 

of the late nineteenth and twentieth centuries. He first stated and proved 

the theorem in 1888, using a nonconstructive proof that led Paul Gordan 
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to declare famously, "Das istnichtMathematik. Das istTheologie. [This is 

not mathematics. This is theology.]" In time, though, the value of 

nonconstructive proofs was more widely recognized. 

2.1.4 Proof 

By induction, it suffices to show that if  is a Noetherian ring, then so 

is . 

To this end, suppose that  is an ascending chain of (two-

sided) ideals of  

Let  denote the set of elements  of  such that there is a 

polynomial in  with degree at most  and with  as the coefficient 

of . Then  is a two-sided ideal of ; furthermore, for any  

, ,  

Since  is Noetherian, it follows that for every , the chain

stabilizes to some ideal . Furthermore, the 

ascending chain also stabilizes to some ideal . 

Then for any  and any , We claim that the 

chain  stabilizes at . For this, it suffices to show that for 

all , . We will thus prove that all polynomials of 

degree  in  are also elements of , by induction on . 

For our base case, we note that , and these ideals are the sets 

of degree-zero polynomials in  and , respectively. 

Now, suppose that all of 's elements of degree  or lower are also 

elements of . Let  be an element of degree  in . Since

there exists some element  with the same leading 

coefficient as . Then by inductive hypothesis, so

as desired.  

From now on we will assume that all rings, unless otherwise stated, are 

commutative and have an identity element 1  

Let R, R0 two rings. A map υ : R → R0 will be called a homomorphism 

if:  

• υ(x + y) = υ(x) + υ(y) for every x, y   R  
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• υ(xy) = υ(x)υ(y) for every x, y   R  

• υ(1) = 1  

The kernel of a homomorphism υ : R → R0 is by definition the set: 

kerυ = {x   R : υ(x) = 0}  

This is a subgroup of R and it also has the property that if x  ker(υ) and 

y   R then xy ker(υ). This motivates the following definition: 

Definition  A subgroup I of a ring R is called an ideal if for every x   I 

and y   R, we have that xy  I. 

According to the above definition, nothing prevents the ideal from 

coinciding with the ring R. From now one we will be making the 

assumption that, unless otherwise stated, an ideal will not contain the 

identity, in other words it will be a strict ideal. Also, the ideal (0) will be 

usually referred to as the trivial ideal. 

For every ideal I of the ring R the group R/I can be naturally given the 

structure of a ring so that the quotient (group) homomorphism:  

q : R → R/I 

is a ring homomorphism. This is usually referred to as the natural 

epimorphism associated with the ideal I. 

We recall that a ring R is called an integral domain if it has no zero-

divisors, i.e. whenever xy = 0 then either x = 0 or y = 0. Also an ideal I 

will be called prime if whenever xy  I either x   I or y   I. This 

definition is clearly motivated by the ideals pZ of Z for p prime number. 

We have a natural connection between prime ideals and integral 

domains: 

Proposition  Let I be an ideal of the ring R. Then the quotient R/I is an 

integral domain if and only if I is prime. 

Proof: Chasing definitions. 

We also recall that a ring, in which every non-zero element has a 

multiplicative inverse, is called a field. A simple remark gives us: 

Proposition  A ring R is a field if and only if it has no non-trivial ideals. 
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An ideal I of R is called maximal if it is not contained in any strictly 

larger ideal. Then we have that an ideal I is maximal if and only if the 

quotient R/I is a field. A standard application of Zorn‘s lemma also gives 

us that any ideal is contained in a maximal ideal. 

Definition  The set of prime ideals of a ring R will be denoted by specR 

and the set of maximal ideals will be denoted by m-specR. 

If F is a field then the maximal ideals of F[x] are in one-to-one 

correspondence with monic irreducible polynomials. If F is further 

algebraically closed then the maximal ideals are in one-to-one 

correspondence with the elements of F. 

Let R be a ring and I an ideal of R. Then a subset A ⊂ R is said to 

generate I if: 

I = {x1y1 + x2y2 + .... + xnyn|xi  A, yi  R} 

A will be also called a set of generators. If an ideal I has a finite set of 

generators, then it is called finitely generated. An ideal I is called 

principal if it is generated by just one element a   R. Such an ideal is 

denoted by (a). We have the very important: 

Definition  A ring R is called Noetherian if every ideal I ⊂ R is finitely 

generated. Also, a ring R is called a principal ideal domain (p.i.d.) if 

every ideal in R is principal. 

We have the following important characterization of Noetherian rings: 

Proposition    A ring R is Noetherian if and only if every increasing 

sequence of ideals. 

I1 ⊂ I2 ⊂ I3 ⊂ ... 

is eventually constant. 

Proof: Let R be Noetherian and {In} an increasing sequence of ideals. 

Then S In is also an ideal and since R is Noetherian it is finitely 

generated, say, by a1, ..., am Since the ai ‘s are elements of the union S 

In, they are each contained in some In. But if we take the ideal with the 

largest index, then it will contain all of them and it will, thus, coincide 

with the union. 
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For the converse, notice that if an ideal I ⊂ R is not finitely generated, 

then one can inductively define a strictly increasing sequence of ideals as 

follows: Let x1 6= 0 be in I. Then set I1 = (x). We have that I 6= I1, 

otherwise I would be finitely generated. So there is x2   I − I1. Let now 

I2 = (x1, x2). Then I 6= I2 and thus we can find x3   I − I2. We set I3 = 

(x1, x2, x3) and continue in the same fashion 

One of the early and most important theorems of Commutative algebra 

is: 

Check in Progress-I 
Problem 1 Complete the following exercises for your favorite choice of 

∗ among {a, b, c}.  

(a) Show that 3(∗) =⇒ 2(∗) =⇒ 1(∗) for ∗  {a, b, c}.  

(b) Show that 2(∗) =⇒ 3(∗) for ∗  {a, b, c}. . Hint: Take a surjection γ : 

Rn → M, and take the preimages of the various objects under γ.  

(c) Show that 1(∗) =⇒ (2∗). Hint: Use induction on n. For n > 1, look at 

the short exact sequence 0 → R ι −→ Rn π−→ Rn−1 → 0. Given M ⊂Rn 

, think about the modules M ∩ ι(R) and π(M). Remark: If R is a field, 

then 1(b) is obvious, but 2(b) is the first significant theorem in a linear 

algebra course. So you should expect to need to do some work here. 

Solution 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

 

Problem 2 Complete the following exercises for your favorite choice of 

# among {1, 2, 3}.  

(a) Show that #(b) =⇒ #(a).  
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(b) Show that #(c) =⇒#(b).  

(c) Show that #(a) =⇒ #(c). 

Solution 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

2.2 (HILBERT BASIS THEOREM).  

Proof: Let J be a non-trivial ideal of R[x] and m the least degree of a 

non-zero polynomial in J. Then for n ≥ m define: 

In = {a  R|a is the leading coefficient k of an n-th degree polynomial in 

J} [ {0} }] 

It is a routine to check that the In‘s are ideals of R and that In⊂ In+1. 

Since R is a Noetherian ring, each of the In is finitely generated and there 

exists a k   N such that In = Ik for n ≥ k. For each n with m ≤ n ≤ k, let 

An be a finite set of polynomials of degree n such that their leading 

coefficients generate In. Let A = S An. Then A is a finite set and we will 

show that it generates J. We will use induction on the degree of a 

polynomial in J. 

If deg p(x) = m (nothing smaller is possible for a non-zero polynomial!), 

then there are qi ‘s in Am and ai  R such that the leading coefficient of 

p(x) coincides with the leading coefficient of Paiqi(x). This means that 

p(x) − Paiqi(x) has degree strictly less than m, which implies that it is the 

zero polynomial and our induction is complete for m. 

Now, assuming the claim for all naturals between m and n we are going 

to check it for n + 1. If n + 1 ≤ k then there exist qi(x) in An+1 and ai  R 

such that p(x) − Paiqi(x) is of degree less than n + 1. This polynomial can 

now be written in terms of the elements of A by induction hypothesis. On 
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the other hand, if n + 1 > k, then there are polynomials of degree n, 

qi(x)in J and ai  R so that the leading coefficient of p(x) coincides with 

that of x Paiqi(x). Thus the difference p(x) − x Paiqi(x) is in J and has 

degree less than n + 1. The inductive hypothesis applied both on the qi(x) 

and p(x) − x Paiqi(x) concludes the proof. 

Recall from the Noetherian Rings page that a ring R is said to be a 

Noetherian ring if it satisfies the ascending chain condition, that is, for all 

ascending chains of ideals I1⊆I2⊆...⊆In⊆... there exists an N N such 

that for all m≥N we have that Im=IN. Equivalently, we proved that R is 

Noetherian if and only if every ideal I is finitely generated, that is, there 

exists x1,x2,...,xn I such that I=(x1,x2,...,xn). 

We about to prove a very important result known as the Hilbert basis 

theorem which tells us that if R is a Noetherian ring then the 

corresponding ring of polynomials of a single variable x, R[x], is a 

Noetherian ring. We first need the following lemma. 

We first need to get some notation out of the way. If F R[x] then F is of 

the form: 

(1) F(x)=anxn+an−1xn−1+...+a1x+a0 

We define the function cof(F) to be the leading coefficient of F. That is, 

if F has degree n as above then: 

(2) cof(F)=an 

For m≥0 and for an ideal I, we define: 

(3) Jm={cof(F):F I,degF≤m} 

Lemma 1: Let R be a Noetherian ring and let I be an ideal.  

Then for all m≥0, Jm is an ideal. 

 Proof: Let a Jm and let b R. Then a=cof(F) for some 

polynomial F I with degF≤m.  

 Consider the function bF.  

 Then bF I since I is an ideal. Furthermore, deg(bF)=deg(F)≤m.  

 Therefore cof(bF) Jm. But cof(bF)=ab. So ab Jm. 
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 Now let a,b Jm. Then a=cof(F) and b=cof(G) for some 

polynomials F,G I with degF,degG≤m. Let degF=s and 

let degG=t. Then F and G have the form: 

(4) F(x)G(x)=axs+as−1xs−1+...+a1x+a0=bxt+bt−1xt−1+...+b1x+b0 

 Without loss of generality, assume that s≥t. Define a new 

polynomial H by: 

(5) H(x)=F+xs−tG) 

 Since F,G I we have that H I. Furthermore observe that: 

(6) H(x)=[axs+as−1xs−1+...+a1x+a0]+xs−t[bxt+bt−1xt−1+...+b1x+b

0]=axs+as−1xs−1+...+a1x+a0+bxs+bt−1xs−1+...+b1xs−t+1+b0xs

−t 

 Therefore cof(F+xs−tG)=a+b. Hence (a+b) Jm. Thus Jm is an 

ideal. 

Theorem 1 (The Hilbert Basis Theorem): Let R be a Noetherian ring.  

Then R[x] is a Noetherian ring. 

Proof: Let I⊆R[x] be an ideal and for each m≥0 let Jm be defined in 

terms of I. 

Consider the following ascending chain of ideals: 

(7) 

J1⊆J2⊆...⊆Jn⊆... 

Since R is Noetherian, there exists an N N such that for all m≥N we have 

that Jm=JN. 

Also, since R is a Noetherian ring every ideal in R is finitely generated. 

So for each m≥0 there exists elements am1,am2,...,amk such that: 

(8) 

Jm=(am1,am2,...,amk) 
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For each 1≤j≤k, choose a polynomial Fmj I such that amj=cof(Fmj). 

Let I′ be defined as the ideal generatedby the Fmjs for all m≤N. We claim 

that I=I′. 

By definition, we have that I′⊆I. Now suppose that I′⊉I. Then there 

exists a function G I such that G I′. Let G be chosen of minimal degree 

in I′ and let deg(G)=d. Then cof(G) Jd. So cof(G) has the form: 

(9) 

cof(G)=∑αjcof(Fdj) 

Where αj R and Fdj are in the list of generators for I′ and 

where deg(Fdj)≤d. Let: 

(10) 

Q(x)=∑αjxd−deg(Fdj)Fdj 

Then Q I and deg(Q)=d. But cof(Q)=cof(G). Then G−Q I. 

But deg(G−Q)≤d−1. Since G I′ and Q I′ we hae that G−Q I′ and is 

such that deg(G−Q)<d. But this contradicts G having minimal degree 

in I. 

Therefore I=I′. Since I′ is finitely generated so is I. So every ideal 

in R[x] is finite generated, i.e., R[x] is Noetherian. 

 Check Your Progress-Ii 

Problem1. Let R be a Noetherian complete local ring. Any quotient 

of R is also a Noetherian complete local ring. Given a finite ring 

map R→S, then S is a product of Noetherian complete local rings. 

Solution 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 
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Problem2. Let (R,m) be a complete local ring. If m is a finitely 

generated ideal then R is Noetherian. 

Solution 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

 

Problem3 Let p be a prime number. Let k be a field of characteristic p. 

There exists a Cohen ring Λ with Λ/pΛ k. 

Solution 

…………………………………………………………………………… 

……………………………………………………………………………

…………………………………………………………………………… 

2.3 COHEN’S STRUCTURE THEOREM 

In mathematics, the Cohen’s structure theorem, introduced 

by Cohen (1946), describes the structure of complete Noetherian local 

rings. Before proceeding, one should consult our notes on Hensel‘s 

Lemma, where some subtle differences in definitions between Zariski & 

Samuel and Atiyah& Macdonald are discussed. In these notes, a local 

ring is not assumed to be Noetherian and a ring is complete if every 

Cauchy sequence converges and the intersection ∩nmn is zero (these 

follow A&M, not Z&S). However, with the conventions of Z&S the 

same statements with the same proofs are true. In Z&S local rings are 

Noetherian but completeness does not include the intersection 

requirement. But all we need is that A has one maximal ideal, limits for 

Cauchy sequences and ∩nmn = 0 - so either set of hypothesis will do. 

Some consequences of Cohen's structure theorem include three 

conjectures of Krull: 
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 Any complete regular equicharacteristic Noetherian local ring is a 

ring of formal power series over a field. (Equicharacteristic means 

that the local ring and its residue field have the same characteristic, 

and is equivalent to the local ring containing a field.) 

 Any complete regular Noetherian local ring that is not 

equicharacteristic but is unramified is uniquely determined by its 

residue field and its dimension. 

 Any complete Noetherian local ring is the image of a complete 

regular Noetherian local ring. 

 

Statement 

The most commonly used case of Cohen's theorem is when the complete 

Noetherian local ring contains some field. In this case Cohen's structure 

theorem states that the ring is of the form k[[x1,...,xn]]/(I) for some ideal I, 

where k is its residue class field. 

In the unequal characteristic case when the complete Noetherian local 

ring does not contain a field, Cohen's structure theorem states that the 

local ring is a quotient of a formal power series ring in a finite number of 

variables over a Cohen ring with the same residue field as the local ring. 

A Cohen ring is a field or a complete characteristic zero discrete 

valuation ring whose maximal ideal is generated by a prime 

number p (equal to the characteristic of the residue field). 

In both cases, the hardest part of Cohen's proof is to show that the 

complete Noetherian local ring contains a coefficient ring (or coefficient 

field), meaning a complete discrete valuation ring (or field) with the 

same residue field as the local ring. 

Definition 1. Let A be a local ring A with maximal ideal m. We call A 

an equicharacteristic local ring if A has the same characteristic as its 

residue field A/m. A field of representatives for A is a subfield L of A 

which is mapped onto A/m by the canonical mapping of A onto A/m. 

Since L is a field, the restriction of this mapping to L gives an 

isomorphism of fields L ∼= A/m. 
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Lemma 1. Let A be an equicharacteristic local ring with maximal ideal 

m and characteristic p 6= 0. If mp = (0) then A admits a field of 

representatives.  

Proof. Let Ap be the set of all elements a p where a ranges over A. Then 

Ap is obviously a subring of A. If a p is any nonzero element of A, then 

since mp = (0) we must have a /  m and consequently a is a unit in A. If 

ay = 1 then y p is an inverse for x p in Ap , and therefore Ap is a subfield 

of A. Among all the subfields of A containing Ap , Zorn‘s Lemma 

produces a maximal subfield L. Let ϕ : A −→ A/m be canonical. We 

claim that ϕ(L) = A/m. 

Assume to the contrary that there is α   A/m with α / ϕ(L). Since α p 

 ϕ(Ap ) ⊆ ϕ(L) the minimal polynomial of α over ϕ(L) is x p − α p (see 

our notes on purely inseparable extensions). Let a   A be a 

representative of α, ϕ(a) = α. Then a /  L and the isomorphism L ∼= 

ϕ(L) induces a chain of ring isomorphisms 

L[a] ∼= L[x]/(x p − a p )∼= ϕ(L)[x]/(x p − α p ) ∼= ϕ(L)(α) 

Hence L[a] is a subfield of A, contradiciting the maximality of L. We 

conclude that ϕ(L) = A/m, completing the proof. 

Theorem 2. An equicharacteristic complete local ring A admits a field of 

representatives.  

Proof. In the case in which A and A/m both have characteristic 0 the 

Theorem has already been proved in a Corollary to Hensel‘s Lemma. So 

we may assume that the characteristic of A and A/m is a prime p 6= 0. 

Since p ≥ 2 the maximal ideal m = m/m2 of the local ring A/m2 satisfies 

the condition m p = (0). Clearly A/m2 satisfies the other conditions of the 

Lemma, so A/m2 admits a field of representatives K2. For n ≥ 1 let ψn 

denote the canonical map A/mn+1 −→ A/mn, and notice that  

ψ −1 n (m/m n ) = m/m n+1 (1) For n ≥ 2 

the ring A/mn is an equicharacteristic local ring. We now construct by 

induction on n ≥ 2, a representative field Kn of A/mn such that ψn 

induces an isomorphism of Kn+1 onto Kn. Suppose that Kn has already 

been constructed. The inverse image ψ −1 n (Kn) is a subring R of 
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A/mn+1 which contains the kernel p = mn/mn+1 of ψn. Let ξ be any 

element of R not in a. 

Then the image ξ 0 of ξ under ψn is a nonzero element of Kn, and 

consequently is a unit in A/mn. Hence ξ 0  / m/mn, and it follows from 

(1) that ξ /  m/mn+1, so ξ is a unit in A/mn+1. If η is the inverse of ξ in 

A/mn+1 then ψn(η)  Kn and so by definition η   R. Thus ξ is invertible 

in R and we have proved that R is a local ring with maximal ideal p. 

Since p = mn/mn+1 and m2n ⊆ mn+1 we have p 2 = (0). Clearly both R 

and R/p ∼= Kn have characteristic p, so the Lemma shows the existence 

of a representative field Kn+1 of R. Since R/p ∼= Kn it is easy to see 

that ψn induces an isomorphism of Kn+1 onto Kn, and the canonical 

morphism A/mn+1 −→ A/m is the composition of ψn and A/mn −→ 

A/m, so the fact that Kn is a representative field of A/mn implies that 

Kn+1 is a representative field of A/mn+1. 

         Since A is complete we have ring isomorphisms A ∼= Ab ∼= 

lim←− A/mn. So given any sequence of elements (ηn)n≥1 with ηn  

A/mn there is precisely one element y   A admitting ηn as an mn-residue 

for all n. Set K1 = A/m and let η = η1 be any element of K1. Consider 

the elements  

η2 = ψ −1 1 (η1), η3 = ψ −1 2 (η2), . . . ηn+1 = ψ −1 n (ηn), . . . 

withηi  Ki for all i ≥ 1. Denote by u(η) the unique element of A defined 

by this sequence. It is readily verified that u(0) = 0, u(1) = 1 and u(η + η 

0 ) = u(η) + u(η 0 ), u(ηη0 ) = u(η)u(η 0 ), so u(K1) is a subring of A. 

Furthermore, for every η 6= 0 in K1 there exists an element η 0 in K1 

such that ηη0 = 1 whence u(η 0 ) is the inverse of u(η) in u(K1). 

Therefore u(K1) is a subfield of A, and by construction ϕ(u(K1)) = K1 = 

A/m where ϕ : A −→ A/m is canonical, so we have found a 

representative field of A. 

Lemma 3. Let B be a ring, a an ideal of B, M an B-module, (Mn) an a-

filtration of M. Suppose that B is complete in the a-topology and that M 

is Hausdorff in its filtration topology. Suppose also that G(M) is 

generated over G(B) by a finite set of homogenous elements ξ1, . . . , ξn 

of degrees n(i). If xi  Mn(i) is equal to ξi in Mn(i)/Mn(i)+1 then the 

elements x1, . . . , xn generate M over B. 
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Corollary 4. An equicharacteristic complete regular local ring A is either 

a field or has dimension d ≥ 1 and is isomorphic to a formal power series 

ring over a field in d variables.  

Proof. A regular local ring of dimension zero is a field, so assume d ≥ 1, 

let m be the maximal ideal of A and let a1, . . . , ad be a regular system of 

parameters with m = (a1, . . . , ad). By the previous Theorem, A admits a 

representative field K. From our notes on Analytic Independence there is 

a morphism of rings  

ϕ : K[[x1, . . . , xd]] −→ A 

which is injective.  

The subring B = K[[a1, . . . , ad]] of A is a complete regular local ring 

with maximal ideal n generated by a1, . . . , ad (in B), so we have m ∩ B 

= n. Considering A as a B-module, we are in the situation of the 

preceeding Lemma. We claim that Gm(A) is generated as a Gn(B)-

module by the homogenous element 1 of order zero. We have 

Gn(B) = B/n   n/n 2   . . . 

Gm(A) = A/m   m/m 2   . . . 

It is standard that Gm(A) = (A/m)[a1, . . . , ad]. So it suffices to show 

that any monomial kan1 1 . . . a nd d in the ai (which is a homogenous 

element of order Pni in Gm(A)) belongs to the submodule generated by 

1. But the ai all belong to n and since K is a representative field B/n ∼= 

K ∼= A/m, so we can manufacture such a monomial in Gn(B) and 

simply multiply it by 1   Gm(A) to produce the desired result. The 

preceeding Lemma now implies that A is generated over B by 1, that is, 

A = B. So A is isomorphic to a formal power series ring over a field in d 

variables, as required. 

2.4 LET US SUM UP 

 Let R be a Noetherian Abelian add-associative right zeroed right 

complementable associative distributive well unital commutative non 

empty double loop structure. Then Polynom-Ring R is Noetherian. 
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1.  For every ideal I of the ring R the group R/I can be naturally given 

the structure of a ring so that the quotient (group) homomorphism:  

q : R → R/I is a ring homomorphism. 

2. Let I be an ideal of the ring R. Then the quotient R/I is an integral 

domain if and only if I     is prime. 

3. A ring R is called Noetherian if every ideal I ⊂ R is finitely 

generated. Also, a ring R is called a principal ideal domain (p.i.d.) if 

every ideal in R is principal. 

4. The Hilbert Basis Theorem: Let R be a Noetherian ring.  

             Then R[x] is a Noetherian ring. 

5. Let R be a Noetherian Abelian add-associative right zeroed right 

complementable associative distributive well unital commutative non 

empty double loop structure. Then Polynom-Ring R is Noetherian. 

6.  Let R be an Abelian add-associative right zeroed right 

complementable associative distributive well unital non trivial 

commutative non empty double loop structure. Suppose R is 

Noetherian. Let n be a natural number. Then Polynom-Ring(n,R) is 

Noetherian. 

2.5 KEYWORD 

ABELIAN :Having members related by a commutative operation 

QUOTIENT :A result obtained by dividing one quantity by another 

ISOMORPHIC :Corresponding or similar in form and relations 

2.6 QUESTIONS FOR REVIEW 

Problem 1 Show that a quotient ring of a noetherian ring is noetherian. 

[Hint: This is easiest with the third properties.] 

Problem2We will now prove the Hilbert basis theorem: If A is 

noetherian, then A[t] is noetherian. 
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Problem3This is the original purpose for which Hilbert proved his Basis 

Theorem. This is even more optional than the rest of the problem set, but 

it is really fun. 

Problem 4(Cohen Structure Theorem). Let (R,m) be a complete local 

ring. 

1. R has a coefficient ring  

2. if m is a finitely generated ideal, then R is isomorphic to a 

quotient 

Λ[[x1,…,xn]]/I 

where Λ is either a field or a Cohen ring. 

2.7 ANSWER TO CHECK IN PROGRESS 

Check In Progress-1 

Answer Q. 1 check in section 1.1 

 Q. 2 Check in section 1.2 

Check In progress-II 

Answer Q. 1 Check in section 2 

 Q. 2 Check in section 3 

 Q. 3 Check in section 2 
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UNIT 3 - NOETHERIAN RING 

 

STRUCTURE 

3.0 Objective 

3.1 Introduction 

3.1.1 Jacobson Radical 

3.1.2 The Baer Radical 

3.1.3 The upper nil radical or Köthe radical 

3.1.4 Singular radical 

3.1.5 The Levitzki radical 

3.1.6 The Brown–McCoy radical 

3.1.7   The Von Neumann regular radical 

3.1.8 The Artinian radical 

3.2 The Radical of a Ring 

3.3 The Radicals of Artinian rings and Modules 

3.4 Modules over Artinian Rings 

3.5 Radical Of a Module 

3.6 Primary Decomposition 

3.7 Let Us Sum Up 

3.8  Keyword 

3.6  Questions For Review 

3.10 Suggestion Reading And References 

3.0 OBJECTIVE 

In the theory of radicals, rings are usually assumed to be associative, but 

need not be commutative and need not have an identity element. In 

particular, every ideal in a ring is also a ring. 



Notes 

66 

A radical class (also called radical property or just radical) is a class σ 

of rings possibly without identities, such that: 

1. the homomorphic image of a ring in σ is also in σ 

2. every ring R contains an ideal S(R) in σ that contains every other 

ideal of R that is in σ 

3. S(R/S(R)) = 0. The ideal S(R) is called the radical, or σ-radical, 

of R. 

The study of such radicals is called torsion theory. 

For any class δ of rings, there is a smallest radical class Lδ containing it, 

called the lower radical of δ. The operator L is called the lower radical 

operator. 

A class of rings is called regular if every non-zero ideal of a ring in the 

class has a non-zero image in the class. For every regular class δ of rings, 

there is a largest radical class Uδ, called the upper radical of δ, having 

zero intersection with δ. The operator U is called the upper radical 

operator. 

A class of rings is called hereditary if every ideal of a ring in the class 

also belongs to the class 

3.1 INTRODUCTION RADICAL OF A 

RING 

In ring theory, a branch of mathematics, a radical of a ring is an ideal of 

"not-good" elements of the ring. 

The first example of a radical was the nilradical introduced by Köthe 

(1930), based on a suggestion of Wedderburn (1908). In the next few 

years several other radicals were discovered, of which the most important 

example is the Jacobson radical. The general theory of radicals was 

defined independently by (Amitsur 1952, 1954, 1954b) and Kurosh 

(1953). 

Examples 
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3.1.1 The Jacobson Radical 

Let R be any ring, not necessarily commutative. The Jacobson radical 

of R is the intersection of the annihilators of all simple right R-

modules. 

There are several equivalent characterizations of the Jacobson 

radical, such as: 

 J(R) is the intersection of the regular maximal right (or left) ideals 

of R. 

 J(R) is the intersection of all the right (or left) primitive ideals 

of R. 

 J(R) is the maximal right (or left) quasi-regular right (resp. left) 

ideal of R. 

As with the nilradical, we can extend this definition to arbitrary two-

sided ideals I by defining J(I) to be the preimage of J(R/I) under the 

projection map R→R/I. 

If R is commutative, the Jacobson radical always contains the 

nilradical. If the ring R is a finitely generated Z-algebra, then the 

nilradical is equal to the Jacobson radical, and more generally: the 

radical of any ideal I will always be equal to the intersection of all 

the maximal ideals of R that contain I. This says that R is a Jacobson 

ring. 

3.1.2 The Baer Radical 

The Baer radical of a ring is the intersection of the prime ideals of the 

ring R. Equivalently it is the smallest semiprime ideal in R. The Baer 

radical is the lower radical of the class of nilpotent rings. Also called the 

"lower nilradical" (and denoted Nil∗R), the "prime radical", and the 

"Baer-McCoy radical". Every element of the Baer radical is nilpotent, so 

it is a nil ideal. 

For commutative rings, this is just the nilradical and closely follows the 

definition of the radical of an ideal. 



Notes 

68 

3.1.3 The Upper Nil Radical Or Köthe 

Radical 

The sum of the nil ideals of a ring R is the upper nilradical Nil
*
R or 

Köthe radical and is the unique largest nil ideal of R. Köthe's 

conjecture asks whether any left nil ideal is in the nilradical. 

3.1.4 Singular Radical 

An element of a (possibly non-commutative ring) is called 

left singular if it annihilates an essential left ideal, that is, r is left 

singular if Ir = 0 for some essential left ideal I. The setof left singular 

elements of a ring R is a two-sided ideal, called the left singular ideal, 

and is denoted . The ideal N of R such that  is denoted by  and is called 

the singular radical or the Goldie torsion of R. The singular radical 

contains the prime radical (the nilradical in the case of commutative 

rings) but may properly contain it, even in the commutative case. 

However, the singular radical of a Noetherian ring is always nilpotent. 

3.1.5 The Levitzki Radical 

The Levitzki radical is defined as the largest locally nilpotent ideal, 

analogous to the Hirsch–Plotkin radical in the theory of groups. If the 

ring is noetherian, then the Levitzki radical is itself a nilpotent ideal, and 

so is the unique largest left, right, or two-sided nilpotent ideal. 

3.1.6 The Brown–Mccoy Radical 

The Brown–McCoy radical (called the strong radical in the theory 

of Banach algebra) can be defined in any of the following ways: 

 the intersection of the maximal two-sided ideals 

 the intersection of all maximal modular ideals 

 the upper radical of the class of all simple rings with identity 

The Brown–McCoy radical is studied in much greater generality than 

associative rings. 
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3.1.7 The Von Neumann Regular Radical 

A von Neumann regular ring is a ring A (possibly non-commutative 

without identity) such that for every a there is some b with a = aba. The 

von Neumann regular rings form a radical class. It contains every matrix 

ring over a division algebra, but contains no nil rings. 

3.1.8 The Artinian Radical 

The Artinian radical is usually defined for two-sided Noetherian rings as 

the sum of all right ideals that are Artinian modules. The definition is 

left-right symmetric, and indeed produces a two-sided ideal of the ring. 

This radical is important in the study of Noetherian rings, as outlined 

by Chatters (1980). 

Nil and Nilpotent ideals.  

An element a (respectively, an ideal a) of A is nilpotent if a n = 0 

(respectively, a n = 0) for some n ≥ 1. An ideal consisting of nilpotent 

elements is a nil ideal. We have:  

• If a is nilpotent, then 1 − a is a unit with inverse 1 + a 1 + a 2 + . . . 

(note that the sum is finite).  

• An ideal is nilpotent if and only if there exists an n such that the 

product of any n elements all belonging to the ideal vanishes.  

• A nilpotent ideal is clearly nil. But not every nil ideal is nilpotent. In 

fact, in §?? we exhibit a non-zero nil ideal a such that a 2 = a. 

The radical of a module. 

The radical Rad M of a module M is the intersection of all its maximal 

submodules, or, equivalently, the intersection of kernels of all 

homomorphisms into simple modules. We have: 

• Rad M vanishes if and only if M is the submodule of a direct product of 

simple modules; in particular, a semisimple module has trivial radical.  

• Homomorphisms map radicals into radicals. If a submodule N is 

contained in Rad M, then Rad(M/N) = (Rad M)/N. The radical is the 

smallest submodule N such that Rad(M/N) vanishes. (however, just 
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because a submodule N contains Rad M, it does not mean that Rad(M/N) 

vanishes.)  

•   Rad Mi = Rad  Mi ⊆ Rad Q Mi ⊆ Q Rad Mi . • Let M be of finite 

type. Then 

             – Rad M = M implies M = 0; more generally, N + Rad M = M 

for a submodule N implies N = M. (If N ( M, then choose P maximal 

submodule with P ⊇ N—this uses the finite generation of M; then Rad M 

⊆ P, so N + Rad M ⊆ P.) – x in M belongs to Rad M if and only if for 

any finite set x1, . . . , xn of generators of M and any set a1, . . . , an of 

elements of A, the set x1 + a1x, . . . , xn + anx is also a set of generators. 

(If x1, . . . , xn are generators and a1, . . . , an are such that x1 + a1x, . . . , 

xn + anx are not, then choose N maximal submodule containing x1 + 

a1x, . . . , xn + anx. Then x /  N, for otherwise x1, . . . , xn belong to N, a 

contradiction. Conversely, suppose x is not in the radical. Then choose 

maximal N such that x /  N. Let a1 be such that x1 + N = a1x + N (such 

an a1 exists since M/N is simple and x /  N). Let a2, . . . , an be choosen 

analogously with respect to x2, . . . , xn. Then x1 − a1x, . . . , xn − anx all 

belong to N and therefore do not generate M.) 

3.2 THE RADICAL OF A RING.  

The radical Rad A of A is defined to be its radical as a left module over 

itself: Rad A := Rad AA. The annihilator of a simple module (in other 

words, a primitive ideal) is evidently the intersection of the annihilators 

of the non-zero elements of the module; these being all maximal left 

ideals, we get Rad A = intersection of annihilators of simple 

(respectively, semisimple) modules 

We have: 

• Rad A is a two sided ideal. For, annihilators of modules are two sided 

ideals.  

• (Rad A)M ⊆ Rad M, for M/ Rad M is a submodule of a direct product 

of simple modules and so killed by Rad A. Equality need not hold even 

in very good cases: e.g. A = Z and M = Z/pnZ with n ≥ 1. 
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 • Nakayama‘s lemma: If M is a of finite type and N a submodule such 

that N + (Rad A)M = M, then N = M. (For, (Rad A)M ⊆ Rad M. See the 

relevant sub-item of the last section.) – Let M be of finite type and m a 

right ideal contained in the radical Rad A. If AA/m ⊗A M = 0, then M = 

0. (For, 0 = AA/m ⊗A M ' M/mM menas (Rad A)M = M.) – Let u : M 

→ N be a A-linear map of modules. Let m be a right ideal contained in 

Rad A, N be finitely generated, and id ⊗ u : AA ⊗A M → AA ⊗A N 

be surjective. Then u is surjective.  

• Let a be a two sided ideal of A. Then Rad(A/a) ⊇ (Rad A + a)/a. If a ⊆ 

Rad A, then Rad(A/a) = Rad A/a. (The A-module structure of A/a 

coincides with that of its structure as a module over itself. Now use the 

relevant items from the last section.)  

• The Rad A is the smallest two sided ideal such that A/ Rad A has no 

radical. (By the previous item it follows that A/ Rad A has no radical as a 

ring. Conversely, if Rad (A/a) = 0, then (Rad A + a)/a = 0 (previous 

item), so Rad A ⊆ a.) 

Theorem. An element x of the ring A belongs to the radical if and only if 

1 − ax has a left inverse for every a in A. 

Proof. This follows from the characterization in the last section of 

elements belonging to the radical of a module of finite type. 

We have as corollaries: 

 • Rad A is the largest left ideal a such that 1 − x has a left inverse for 

every x in a.  

• Rad A is the largest two sided ideal a such that 1 − x is invertible for 

every x in a. (By the theorem, it suffices to show that 1 − x is invertible 

when x is in Rad A. We know that it has a left inverse, say y: y(1 − x) = 

y − yx = 1. We will show that y is invertible, i.e., it also has a left 

inverse. It will then follow that (1 − x) = y−1 is also invertible. Since z := 

1 − y = −yx belongs to Rad A, there exists y 0 such that y 0 is a left 

inverse for 1 − z = y.) 

 • Rad (Aopp) = Rad A. (This is a consequence of the previous item.)  



Notes 

72 

• Any nil ideal (left, right, or two sided) is contained in the radical. (The 

previous item is used in the proof that a right nil ideal is contained in the 

radical.)  

• The radical of a direct product of rings is the direct product of the 

radicals. 

Not every nilpotent element is contained in the radical (e.g., in Mn(C)). 

But a nilpotent central element belongs to the radical, for the ideal it 

generates is nil. Rad A is not necessarily a nil ideal; in particular, not 

necessarily nilpotent. It can happen that Rad A 2 = Rad A even if Rad A 

is a nil ideal. 

 

Theorem . A left ideal l is contained in Rad A if and only if for every 

finitely generated non-zero module M we have lM 6= M 

Proof. The ‗only if‘ part is Nakayama‘s lemma. For the if part, the 

hypothesis implies that lN = 0 for every simple module N (because 

simple modules are cyclic and contain no non-trivial proper 

submodules), which means l ⊆ Rad A. 

As examples, we have: 

• Let A be the ring k[[X1, . . . , Xn]] of formal power series in finitely 

many variables over a field k. The units in A are the series with non-zero 

constant term. The elements with vanishing constant term constitute the 

unique maximal ideal of A, which therefore is the radical. There are no 

non-trivial nilpotent elements in A. The quotient field of A has of course 

no radical. Thus the sub-ring of a ring without radical could well have 

radical.  

• Let C be an integral domain and B the polynomial ring C[X1, . . . , Xn] 

in finitely many variables over C. Then, if n > 0, B has trivial radical: in 

fact, for 0 6= f, we have deg(1 − fg) > 0 and so 1 − fg is not a unit for g 

any element of positive degree. Let k be a field. Then k[X1, . . . , Xn] is 

without radical. But its over ring k[[X1, . . . , Xn]] has non-trivial radical 

intersecting k[X1, . . . , Xn] non-trivially.  
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• Let k be a field, S a set, and A the ring of k valued functions on S. Then 

A is without radical. Indeed, the evaluation at any point s of S gives a 

morphism A → k, whose kernel is therefore a maximal ideal. The 

intersections of these maximal ideals as s varies over S is clearly 0. 

Proposition . Let A be a principal ring.  

(1) A is without radical if and only if either A is a field or A has 

infinitely many maximal ideals.  

(2) A/Ax is without radical if and only if x is square free. 

 Proof. Let (pα) be a system of representatives of maximal elements. The 

maximal ideals of A are Apα. In order that 

 

3.3 THE RADICALS OF ARTINIAN RINGS 

AND MODULES 

Theorem  Let A be Artinian. Then Rad A is the largest two sided 

nilpotent ideal of A.  

Proof. Any nil ideal (one-sided or two-sided) is contained in the radical, 

as has already been observed in the last subsection. It suffices to prove 

therefore that Rad A is nilpotent (we have also observed that Rad A is a 

two-sided ideal, being the annihilitor of all simple modules). Set r := Rad 

A. Choose n large enough so that r n = r n+1 = . . . =: a. It suffices to 

assume that a 6= 0 and arrive at a contradiction.  

          Assume a 6= 0. Choose a minimal left ideal l with the property that 

al 6= 0 (such an ideal exists by the Artinian hypotheis: observe that aA = 

a 6= 0, so the collection of ideals with the property is non-empty). Now, 

on the one hand, a(rl) = (ar)l = al 6= 0, so that rl has the property; on the 

other, rl ⊆ l. So rl = l by the minimality of l.  

         We claim now that l is finitely generated. It will then follow, by 

Nakayama‘s lemma, that l = 0, which is a contradiction, since al 6= 0 by 

choice of l, and the proof will be over. 
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To prove the claim, we prove in fact that l is cyclic. Indeed, there exists x 

  l such that ax 6= 0 (by the choice of l); now Ax is such that aAx 6= 0 

and Ax ⊆ l, so that Ax = l by the minimality of l. 

 

Corollary . The radical of a commutative Artinian ring equals the subset 

of its nilpotent elements. 

 Proof. By Artinianness, the radical is nilpotent. By commutativity, the 

ideal generated by a nilpotent element is nilpotent, and so contained in 

the radical. 

TheoremM is semisimple of finite length if and only if it is Artinian and 

Rad M = 0. 

Proof. A finite length module is Artinian (and Noetherian); the radical of 

a semisimple module vanishes. Conversely, suppose that M is Artinian 

and Rad M = 0. Consider, using Artinianness, a smallest element—call it 

N—of the set of submodules that are written as finite intersections of 

maximal submodules. (This collection is non-empty, M itself being the 

intersection of the empty collection.) If N 6= 0, choose 0 6= n   N. Since 

Rad M = 0, there exists a maximal submodule K such that n /  K. Now, 

adding K to the collection from which we obtained N, we get a 

contradiction to the minimality of N, since K ∩ N ( N. This shows N = 0. 

In other words, we have shown that there exist finitely many maximal 

submodules N1, . . . , Nk of M such that their intersection is 0. This 

means M ,→ M/N1   · · ·   M/Nk. So M is of finite length and 

semisimple (since so is M/N1   · · ·   M/Nk). 

We have, as corollories:  

 

• If M is Artinian, then M/ Rad M is semisimple of finite length.  

• A is semisimple if and only if it is Artinian with trivial radical. 

 • If A is Artinian, A/ Rad A is semisimple. 
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 • A is simple if and only if it is Artinian and its only two sided ideals are 

0 and itself.  

• The following are equivalent for a commutative ring: 

 

 – it is Artinian and contains no non-trivial nilpotent elements;  

– it is semisimple;  

– it is a finite direct product of fields.  

 

• Let k be a field and A a commutative finite dimensional k-algebra. 

Assume that Rad A = 0. Then A is a finite direct product of fields, each 

of which is a finite extension of k. 

  

3.4 MODULES OVER ARTINIAN RINGS 

Proposition . Let A be an Artinian ring and M an A-module. Then the 

following are equivalent:  

• M is semisimple.  

• (Rad A)M = 0. 

 • AM is semisimple. Proof. If M is semisimple, then Rad M = 0; in 

general, (Rad A)M ⊆ Rad M, so the first implies the second. If AM is 

semisimple then of course M is so (being a module for AM). 

The hypotheis that A is Artinian will be used only now. Let (Rad A)M = 

0. Then AM is a quotient of A/ Rad A. But A/ Rad A is semisimple, it 

being Artinian and without radical. Hence so is AM. 

Proposition . Over an Artinian ring, there exist only finitely many 

isomorphism classes of simple modules, this number being equal to the 

number of simple components of A/ Rad A.  

Proof. Any simple module is a module also for A/ Rad A. And A/ Rad A 

is a semisimple ring. 
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Proposition . Let A be a ring admitting a two sided nilpotent ideal n such 

that A/n is semisimple (e.g., an Artinian ring). For any A-module, the 

following conditions are equivalent:  

 

• M is of finite length  

• M is Artinian  

• M is Noetherian 

 

Proof. If M is of finite length then of course it is both Artinian and 

Noetherian. Now suppose that n p = 0 and that M is Artinian 

(respectively, Noetherian). Consider the filtration M ⊇ nM ⊇ n 2M ⊇ . . . 

⊇ n p−1M ⊇ n pM = 0. The quotients are M/nM, nM/n 2M, . . . , n 

p−1M/n pM. These being modules over the semisimple ring A/n, they 

are on the one hand semisimple. On the other, being sub-quotients of M, 

they are Artinian (respectively, Noetherian). But a semisimple module is 

of finite length if it is Artinian (or Noetherian). So each of the quotients 

is of finite length and therefore so is M. 

 

Corollary . A finitely generated module over an Artinian ring is of finite 

length. In particular, the ring itself is of finite length. Artinian rings are 

therefore Noetherian. 

Proof. A finitely generated module is Artinian. Now apply the 

proposition. 

Check In Progress-I 
Q. 1Define Module over Artinian Ring 

Solution 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 
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…………………………………………………………………………… 

Q. 2Define Artinian Ring 

Solution 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

Q. 3Define radical Of a Ring. 

Solution 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

 

3.5 RADICAL OF A MODULE 

In mathematics, in the theory of modules, the radical of a module is a 

component in the theory of structure and classification. It is a 

generalization of the Jacobson radical for rings. In many ways, it is 

the dual notion to that of the socle soc(M) of M. Let A be a ring (with 

identity according to our convention) and M an A-module. For additive 

subgroups U and V of A and M respectively, we denote by UV the 

subset of M consisting of finite sums P i uivi with ui and vi in U and V 

respectively. Thus UV is a submodule if U is a left ideal; the product of 

left ideals is a left ideal; the product of a left ideal and a right ideal is a 

two-sided ideal. 

Definition 

Let R be a ring and M a left R-module. A submodule N of M is 

called maximal or cosimple if the quotient M/N is a simple module. 
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The radical of the module M is the intersection of all maximal 

submodules of M, 

Properties 

 In addition to the fact rad(M) is the sum of superfluous submodules, 

in a Noetherian module rad(M) itself is a superfluous submodule. 

 A ring for which rad(M) ={0} for every right R module M is called a 

right V-ring. 

 For any module M, rad(M/rad(M)) is zero. 

 M is a finitely generated module if and only if M/rad(M) is finitely 

generated and rad(M) is a superfluous submodule of M. 

 

3.6 PRIMARY DECOMPOSITION 

In mathematics, the Lasker–Noether theorem states that every Noetherian 

ring is a Lasker ring, which means that every ideal can be decomposed as 

an intersection, called primary decomposition, of finitely many primary 

ideals (which are related to, but not quite the same as, powers of prime 

ideals). The theorem was first proven by Emanuel Lasker (1905) for the 

special case of polynomial rings and convergent power series rings, and 

was proven in its full generality by Emmy Noether (1921). 

The Lasker–Noether theorem is an extension of the fundamental theorem 

of arithmetic, and more generally the fundamental theorem of finitely 

generated abelian groups to all Noetherian rings. The Lasker–Noether 

theorem plays an important role in algebraic geometry, by asserting that 

every algebraic set may be uniquely decomposed into a finite union 

of irreducible components. 

It has a straightforward extension to modules stating that every 

submodule of a finitely generated module over a Noetherian ring is a 

finite intersection of primary submodules. This contains the case for 

rings as a special case, considering the ring as a module over itself, so 

that ideals are submodules. This also generalizes the primary 

decomposition form of the structure theorem for finitely generated 

modules over a principal ideal domain, and for the special case of 



Notes 

79 

polynomial rings over a field, it generalizes the decomposition of an 

algebraic set into a finite union of (irreducible) varieties. 

The first algorithm for computing primary decompositions for 

polynomial rings over a field of characteristic 0
[Note 1]

 was published by 

Noether's student Grete Hermann (1926).
[1][better source needed]

 The 

decomposition does not hold in general for non-commutative Noetherian 

rings. Noether gave an example of a non-commutative Noetherian ring 

with a right ideal that is not an intersection of primary ideals. 

Definitions 

Write R for a commutative ring, and M and N for modules over it. 

 A zero divisor of a module M is an element x of R such that xm = 0 

for some non-zero m in M. 

 An element x of R is called nilpotent in M if x
n
M = 0 for some 

positive integer n. 

 A module M is called coprimary if every zero divisor of M is 

nilpotent in M. For example, groups of prime power order and free 

abelian groups are coprimary modules over the ring of integers. 

 A submodule M of a module N is called a primary 

submodule if N/M is coprimary. 

 An ideal I is called primary if it is a primary submodule of R. This is 

equivalent to saying that if ab is in I then either a is in I or b
n
 is 

in I for some n, and to the condition that every zero-divisor of the 

ring R/I is nilpotent. 

 A submodule M of a module N is called irreducible if it is not an 

intersection of two strictly larger submodules. 

 An associated prime of a module M is a prime ideal that is the 

annihilator of some element of M. 

Statement 

The Lasker–Noether theorem for modules states every submodule of a 

finitely generated module over a Noetherian ring is a finite intersection 

of primary submodules. For the special case of ideals it states that every 

ideal of a Noetherian ring is a finite intersection of primary ideals. 
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An equivalent statement is: every finitely generated module over a 

Noetherian ring is contained in a finite product of coprimary modules. 

The Lasker–Noether theorem follows immediately from the following 

three facts: 

 Any submodule of a finitely generated module over a Noetherian 

ring is an intersection of a finite number of irreducible submodules. 

 If M is an irreducible submodule of a finitely generated 

module N over a Noetherian ring then N/M has only one associated 

prime ideal. 

 A finitely generated module over a Noetherian ring is coprimary if 

and only if it has at most one associated prime. 

A proof in a somewhat different flavor is given below. 

Minimal Decompositions and Uniqueness 

In this section, all modules will be finitely generated over a Noetherian 

ring R. 

A primary decomposition of a submodule M of a module N is 

called minimal if it has the smallest possible number of primary 

modules. For minimal decompositions, the primes of the primary 

modules are uniquely determined: they are the associated primes of N/M. 

Moreover, the primary submodules associated to 

the minimal or isolated associated primes (those not containing any 

other associated primes) are also unique. However the primary 

submodules associated to the non-minimal associated primes 

(called embedded primes for geometric reasons) need not be unique. 

Example: Let N = R = k[x, y] for some field k, and let M be the ideal 

(xy, y
2
). Then M has two different minimal primary decompositions M = 

(y) ∩ (x, y
2
) = (y) ∩ (x + y, y

2
). The minimal prime is (y) and the 

embedded prime is (x, y). 

Non-Noetherian case 

The next theorem gives necessary and sufficient conditions for a ring to 

have primary decompositions for its ideals. 
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Theorem — Let R be a commutative ring. Then the following are 

equivalent. 

1. Every ideal in R has a primary decomposition. 

2. R has the following properties: 

o (L1) For every proper ideal I and a prime ideal P, there exists 

an x in R - P such that (I : x) is the pre-image of I RP under 

the localization map R → RP. 

o (L2) For every ideal I, the set of all pre-images 

of I S
−1

R under the localization map R → S
−1

R, S running 

over all multiplicatively closed subsets of R, is finite. 

 

We continue to let A denote a ring and M an A–module. As in the case 

of ideals, the primary decomposition of modules into primary 

submodules will be achieved using the auxiliary notion of irreducible 

submodules. To compare the notions and results discussed in this section 

to those in the classical case, you may substitute A for M. 

Check In Progress-II 

Note: i) Write your answers in the space given below 

Q. 1 Let R be a commutative ring. Then the following are equivalent. 

1. Every ideal in R has a primary decomposition. 

Solution 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

Q. 2 Define Radical Of a Module 

Solution 

…………………………………………………………………………… 
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…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

 

Definition: Let Q be a submodule of M. We say that Q is primary if Q = 

M and for any a   A and x   M, we have ax   Q and x /  Q =⇒ a nM ⊆ 

Q for some n ≥ 1. We say that Q is irreducible if Q 6= M and for any 

submodules N1 and N2 of M we have  

Q = N1 ∩ N2 =⇒ Q = N1 or Q = N2. 

Clearly, a submodule Q of M is primary iff every zerodivisor of M/Q is 

nilpotent for M/Q. [An element a   A is said to be nilpotent for M if a 

nM = 0 for some n ≥ 1. In other words, a is nilpotent for M iff a   p 

Ann(M).] If Q is a primary submodule of M and p = p Ann(M/Q), we say 

that Q is p–primary. 

As we shall see in the sequel, the above characterization of primary 

submodules [of f. g. modules over noetherian rings] is extremely useful. 

For this reason perhaps, it is sometimes taken as a definition of primary 

submodules [of arbitrary modules]. At any rate, we may tacitly use the 

above characterizations of primary and p–primary submodules in several 

of the proofs below. 

Lemma. Suppose A is noetherian, M is f. g., and Q1, . . . , Qr are p–

primary submodules of M, where r is a positive integer. Then Q1 ∩ · · · 

∩ Qr is also p–primary. 

Proof: Clearly, Q1 ∩ · · · ∩ Qr 6= M. Moreover, there is a natural 

injective homomorphism of M/Q1 ∩ · · · ∩ Qr into M/Q1   · · ·   

M/Qr.  

∅ = Ass(M/Q1 ∩ · · · ∩ Qr) ⊆ Ass (  r i=1M/Qi) = ∪ r i=1Ass(M/Qi) = 

{p}. Thus it follows from that Q1 ∩ · · · ∩ Qr is p–primary. 

Lemma. If M is noetherian, then every submodule of M is a finite 

intersection of irreducible submodules of M. 
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Proof: Assume the contrary. Then we can find a maximal element, say Q, 

among the submodules of M which aren‘t finite intersections of 

irreducible submodules of M. Now Q can‘t be irreducible. Also Q 6= M 

(because M is the intersection of the empty family of irreducible 

submodules of M). Hence Q = N1 ∩ N2 for some submodules N1 and 

N2 of M with N1 6= Q and N2 6= Q. By maximality of Q, both N1 and 

N2 are finite intersections of irreducible submodules of M. But then so is 

Q, which is a contradiction. 

Lemma. Suppose A is noetherian, M is f. g., and Q is an irreducible 

submodule of M. Then Q is primary. 

Proof: Since Q 6= M, Ass(M/Q) 6= ∅. Suppose Ass(M/Q) contains two 

distinct prime ideals p1 = (0 : ¯x1) and p2 = (0 : ¯x2), where ¯x1, x¯2 

denote the images in M/Q of some elements x1, x2 of M. Clearly ¯x1 

and ¯x2 are nonzero elements of M/Q. We claim that Ax¯1 ∩Ax¯2 = {0} 

Indeed, if ax¯1 = bx¯2, with a, b   A, is nonzero, then a /  (0 : ¯x1) and 

b /  (0 : ¯x2). Since (0 : ¯x1) is prime, we find that (0 : ¯x1) = (0 : ax¯1) 

(check!). Similarly, (0 : ¯x2) = (0 : bx¯2). This gives p1 = p2, which is a 

contradiction. Now if y   (Q + Ax1) ∩ (Q + Ax2), then y = y1 + ax1 = 

y2 + bx2 for some y1, y2   Q and a, b   A. But then ax¯1 = bx¯2 in 

M/Q and thus y   Q. It follows that Q = (Q + Ax1) ∩ (Q + Ax2). Also 

since ¯x1 6= 0 6= ¯x2, we have (Q + Ax1) 6= Q 6= (Q + Ax2). This 

contradicts the irreducibility of Q. Thus Ass(M/Q) is singleton so that Q 

is primary. 

Lemma. Suppose A is noetherian, M is f. g., Q is a p–primary 

submodule of M. Then the inverse image of Qp under the natural map M 

→ Mp (given by x 7→ x 1 ) is Q. 

Proof: Suppose x   M is such that x 1   Qp. Then tx   Q for some t   A 

\ p. If x /  Q, then x¯, the image of x in M/Q, is nonzero, and thus t   

Z(M/Q). Hence from (2.1), we see that t   p, which is a contradiction. 

Remark: Given any p   Spec A and a submodule Q0 of Mp, the inverse 

image of Q0 under the natural map M → Mp is often denoted by Q0 ∩ 

M. Thus (2.5) can be expressed by saying that if Q is a p–primary 

submodule of M, then Qp ∩ M = Q. Note that we have been tacitly using 
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the fact that if Q is any submodule of M and S is any m. c. subset of A, 

then S −1Q can be regarded as a submodule of S −1M. 

Example: Let G be a finite abelian group of order n. Let the notation be 

as in the Example preceding (1.5). For 1 ≤ i ≤ h, let Qi = P1 + · · · + Pi−1 

+ Pi+1 + · · · + Ph. Then G/Qi ' Pi , and thus Qi is piZ–primary. Observe 

that (0) = Q1 ∩ · · · ∩ Qh is an irredundant primary decomposition of 

(0); in fact, this decomposition is unique because each of the associated 

primes p1Z, . . . , phZ is clearly minimal. In general, if N is a subgroup, 

i.e., a Z–submodule, of G, and Λ = {i : 1 ≤ i ≤ h and N + Qi 6= G}, then 

N = ∩i Λ(N + Qi) is an irredundant primary decomposition of N, and 

this too is unique. Verify! 

Definition: A prime ideal p of A is called an associated prime of M if p = 

(0 : x) for some x   M. The set of all associated primes of M is denoted 

by AssA(M), or simply by Ass(M). Minimal elements of Ass(M) are 

called the minimal primes of M, and the remaining elements of Ass(M) 

are called the embedded primes of M. 

Lemma. For any submodule N of M, Ass(N) ⊆ Ass(M) ⊆ Ass(N) ∪ 

Ass(M/N). More generally, if 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M is any 

chain of submodules of M, then Ass(M) ⊆∪n i=1Ass(Mi/Mi−1).  

Proof: The inclusion Ass(N) ⊆ Ass(M) is obvious. Let x   M be such 

that (0 : x)   Ass(M). If (0 : x)  / Ass(N), then we claim that (0 : x) = (0 

: ¯x)   Ass(M/N), where ¯x denotes the image of x in M/N. To see this, 

note that (0 : x) ⊆ (0 : ¯x) and if a   A is such that ax¯ = 0 6= ax, then ax 

  N and a /  (0 : x), and since (0 : x) is prime, we have b   (0 : ax) ⇔ ba 

  (0 : x) ⇔ b   (0 : x); consequently, (0 : x) = (0 : ax)   Ass(N), which 

is a contradiction. Thus Ass(M) ⊆ Ass(N) ∪ Ass(M/N). The last 

assertion follows from this by induction on n. 

Example: Let G be a finite abelian group of order n. Suppose n = p e1 1 . 

. . p eh h , where p1, . . . , ph are distinct prime numbers and e1, . . . , eh 

are positive integers. Then G is a Z–module, and the pi–Sylow subgroups 

Pi , 1 ≤ i ≤ h, are Z–submodules of G such that G ' P1   · · ·   Ph. 

Clearly, Ass(Pi) = piZ [indeed, if y is any nonzero element of Pi of order 

p e i , then elements of (0 : y) are multiples of p e i , and if x = p e−1 i y, 
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then (0 : x) = piZ]. Thus by (1.4), Ass(G) = {p1Z, . . . , phZ}. More 

generally, if M is a finitely generated abelian group, then M = Z r   T 

for some r ≥ 0 and some finite abelian group T, and it follows from (1.4) 

that if r > 0 then Ass(M) = {l0Z, l1Z, . . . , lsZ}, where l0 = 0 and l1, . . . 

ls are the prime numbers dividing the order of T. 

3.7 LET US SUM UP 

In this unit we study radical module and also study Noetherian Ring 

which contains a power of radical .We study primary decomposition and 

its properties. We study module over Artinian Ring and its proposition 

and some example. We study some lemma for primary decomposition 

ring. We study Jaconson Radical and Some of its properties.  

1. A radical class (also called radical property or just radical) is a 

class σ of rings possibly without identities, such that: 

1. the homomorphic image of a ring in σ is also in σ 

2. every ring R contains an ideal S(R) in σ that contains 

every other ideal of R that is in σ 

3. S(R/S(R)) = 0. The ideal S(R) is called the radical, or σ-

radical, of R. 

Let R be any ring, not necessarily commutative. The Jacobson radical 

of R is the intersection of the annihilators of all simple right R-modules. 

2. If the ring is noetherian, then the Levitzki radical is itself a 

nilpotent ideal, and so is the unique largest left, right, or two-

sided nilpotent ideal. 

3. The Brown–McCoy radical can be defined in any of the 

following ways: 

1. the intersection of the maximal two-sided ideals 

2. the intersection of all maximal modular ideals 

3. the upper radical of the class of all simple rings with 

identity 

4. An element x of the ring A belongs to the radical if and only if 1 

− ax has a left inverse for every a in A. 
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The radical of a commutative Artinian ring equals the subset of its nilpotent 

elements. 

M is semisimple of finite length if and only if it is Artinian and Rad M = 

0. 

8. Let A be an Artinian ring and M an A-module. Then the following are 

equivalent:  

• M is semisimple.  

• (Rad A)M = 0. 

• AM is semisimple. Proof. If M is semisimple, then Rad M = 0; in 

general, (Rad A)M⊆ Rad M, so the first implies the second. If AM is 

semisimple then of course M is so (being a module for AM 

9. The Lasker–Noether theorem follows immediately from the following 

three facts: 

Any submodule of a finitely generated module over a Noetherian ring is 

an intersection of a finite number of irreducible submodules. 

If M is an irreducible submodule of a finitely generated module N over a 

Noetherian ring then N/M has only one associated prime ideal. 

A finitely generated module over a Noetherian ring is coprimary if and 

only if it has at most one associated prime. 

3.8 KEYOWRD 

Radical : Advocating or based on thorough or complete political or 

social change; representing or supporting an extreme or progressive 

section of a political party. 

Module : Each of a set of standardized parts or independent units 

that can be used to construct a more complex structure, such as an item 

of furniture or a building. 

Noetherian :  The adjective Noetherian is used to describe objects 

that satisfy an ascending or descending chain condition on certain kinds 

of subobjects, meaning that certain ascending or descending sequences 

of . 
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3.9 QUESTIONS FOR REVIEW  

Q. 1 Every ideal of a Noetherian ring contains a power of its radical 

Q. 2 Find an example of a Noetherian ring whose Jacobson radical does 

not equal the nilradical.  

Q. 3  Show that if a ring satisfies the d.c.c. on ideals then the nilradical 

and Jacobson radical are equal.  

Q. 4  Find an example of an ideal I of a ring A which does not contain a 

power of its radical r(I) (so necessarily A is not Noetherian) 

Q.. 5 Let A be Noetherian, Q and M ideals of A with M maximal. TFAE 

 (i) Q is M-primary;  

(ii) r(Q) = M ;  

(iii) Mn ⊆ Q ⊆ M (∃n > 0) . 

3.10 ANSWER FOR CHECK IN 

PROGRESS 

Check in Progress-I 

Answer Q. 1 Check in Section 4 

  Q. 2 Check in Section 3 

  Q. 3 Check in Section 2 

Check in Progress-II 

Answer Q. 1 Check in Section 6 

  Q. 2 Check in Section 5 
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UNIT 4 - MODULE, SUB-MODULE, 

QUOTIENT MODULE 

 

STRUCTURE 

4.0 Objective 

4.1 Introduction 

4.2 Motivation 

4.3 Formal Definition  

4.4  Submorphism and Homomorphism 

4.5 Relation to Representation Theory 

4.6 Submodule 

4.7 Quotient Module 

4.8 Let Us Sum Up 

4.9 Keyword 

4.10 Questions For Review 

4.11 Answer For Check in Progress 

4.12 Suggestion Reading And References 

4.0 OBJECTIVE 

* Learn about module theory 

* learn sub-module 

* work with quotient module 

* work on Submorphism and Homomorphism 

* Learn relation b/w representation theory 
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4.1 INTRODUCTION: MODULE 

In mathematics, a module is one of the fundamental algebraic 

structures used in abstract algebra. A module over a ring is a 

generalization of the notion of vector space over a field, wherein the 

corresponding scalars are the elements of an arbitrary given ring (with 

identity) and a multiplication (on the left and/or on the right) is defined 

between elements of the ring and elements of the module. A module 

taking its scalars from a ring R is called an R-module. 

Thus, a module, like a vector space, is an additive abelian group; a 

product is defined between elements of the ring and elements of the 

module that is distributive over the addition operation of each parameter 

and is compatible with the ring multiplication. 

Modules are very closely related to the representation theory of groups. 

They are also one of the central notions of commutative 

algebra and homological algebra, and are used widely in algebraic 

geometry and algebraic topology. 

4.2 MOTIVATION 

In a vector space, the set of scalars is a field and acts on the vectors by 

scalar multiplication, subject to certain axioms such as the distributive 

law. In a module, the scalars need only be a ring, so the module concept 

represents a significant generalization. In commutative algebra, 

both ideals and quotient rings are modules, so that many arguments about 

ideals or quotient rings can be combined into a single argument about 

modules. In non-commutative algebra the distinction between left ideals, 

ideals, and modules becomes more pronounced, though some ring-

theoretic conditions can be expressed either about left ideals or left 

modules. 

Much of the theory of modules consists of extending as many of the 

desirable properties of vector spaces as possible to the realm of modules 

over a "well-behaved" ring, such as a principal ideal domain. However, 

modules can be quite a bit more complicated than vector spaces; for 

instance, not all modules have a basis, and even those that do, free 
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modules, need not have a unique rank if the underlying ring does not 

satisfy the invariant basis number condition, unlike vector spaces, which 

always have a (possibly infinite) basis whose cardinality is then unique. 

(These last two assertions require the axiom of choice in general, but not 

in the case of finite-dimensional spaces, or certain well-behaved infinite-

dimensional spaces such as L
p
 spaces.) 

4.3 FORMAL DEFINITION 

Suppose that R is a ring and 1R is its multiplicative identity. A left R-

module M consists of an abelian group (M, +) and an 

operation ⋅ : R × M → M such that for all r, s in R and x, y in M, we have: 

1. The operation of the ring on M is called scalar multiplication, 

and is usually written by juxtaposition, i.e. 

as rx for r in R and x in M, though here it is denoted as r ⋅ x to 

distinguish it from the ring multiplication operation, denoted here 

by juxtaposition. The notation RM indicates a left R-module M. 

A right R-module M or MR is defined similarly, except that the 

ring acts on the right; i.e., scalar multiplication takes the 

form ⋅ : M × R → M, and the above axioms are written with 

scalars r and s on the right of x and y. 

Authors who do not require rings to be unital omit condition 4 above in 

the definition of an R-module, and so would call the structures defined 

above "unital left R-modules". In this article, consistent with the glossary 

of ring theory, all rings and modules are assumed to be unital.
[1]

 

If one writes the scalar action as fr so that fr(x) = r ⋅ x, and f for the map 

that takes each r to its corresponding map fr , then the first axiom states 

that every fr is a group endomorphism of M, and the other three axioms 

assert that the map f : R → End(M) given by r ↦ fr is a ring 

homomorphism from R to the endomorphism ring End(M).
[2]

 Thus a 

module is a ring action on an abelian group (cf. group action. Also 

consider monoid action of multiplicative structure of R). In this sense, 

module theory generalizes representation theory, which deals with group 

actions on vector spaces, or equivalently group ring actions. 
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A bimodule is a module that is a left module and a right module such that 

the two multiplications are compatible. 

If R is commutative, then left R-modules are the same as right R-modules 

and are simply called R-modules. 

Examples 

 If K is a field, then K-vector spaces (vector spaces over K) and K-

modules are identical. 

 If K is a field, and K[x] a univariate polynomial ring, then a K[x]-

module M is a K-module with an additional action of x on M that 

commutes with the action of K on M. In other words, a K[x]-module 

is a K-vector space M combined with a linear map from M to M. 

Applying the Structure theorem for finitely generated modules over a 

principal ideal domain to this example shows the existence of 

the rational and Jordan canonical forms. 

 The concept of a Z-module agrees with the notion of an abelian 

group. That is, every abelian group is a module over the ring 

of integers Z in a unique way. For n > 0, let n ⋅ x = x + x + ... 

+ x (n summands), 0 ⋅ x = 0, and (−n) ⋅ x = −(n ⋅ x). Such a module 

need not have a basis—groups containing torsion elements do not. 

(For example, in the group of integers modulo 3, one cannot find 

even one element which satisfies the definition of a linearly 

independent set since when an integer such as 3 or 6 multiplies an 

element, the result is 0. However, if a finite field is considered as a 

module over the same finite field taken as a ring, it is a vector space 

and does have a basis.) 

 The decimal fractions (including negative ones) form a module over 

the integers. Only singletons are linearly independent sets, but there 

is no singleton that can serve as a basis, so the module has no basis 

and no rank. 

 If R is any ring and n a natural number, then the Cartesian 

product R
n
 is both a left and right R-module over if we use the 

component-wise operations. Hence when n = 1, R is an R-module, 

where the scalar multiplication is just ring multiplication. The 

case n = 0 yields the trivial R-module {0} consisting only of its 
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identity element. Modules of this type are called free and 

if R has invariant basis number (e.g. any commutative ring or field) 

the number n is then the rank of the free module. 

 If Mn(R) is the ring of n × n matrices over a ring R, M is an Mn(R)-

module, and ei is the n × n matrix with 1 in the (i, i)-entry (and zeros 

elsewhere), then eiM is an R-module, since reim = eirm   eiM. 

So M breaks up as the direct sum of R-modules, M = e1M   ... 

  enM. Conversely, given an R-module M0, then M0
 n

 is an Mn(R)-

module. In fact, the category of R-modules and the category of 

Mn(R)-modules are equivalent. The special case is that the 

module M is just R as a module over itself, then R
n
 is an Mn(R)-

module. 

 If S is a nonempty set, M is a left R-module, and M
S
 is the collection 

of all functions f : S → M, then with addition and scalar 

multiplication in M
S
 defined by (f + g)(s) = f(s) + g(s) and (rf)(s) 

= rf(s), M
S
 is a left R-module. The right R-module case is analogous. 

In particular, if R is commutative then the collection of R-module 

homomorphisms h : M → N (see below) is an R-module (and in fact 

a submodule of N
M

). 

 If X is a smooth manifold, then the smooth functions from X to 

the real numbers form a ring C
∞
(X). The set of all smooth vector 

fields defined on X form a module over C
∞
(X), and so do the tensor 

fields and the differential forms on X. More generally, the sections of 

any vector bundle form a projective module over C
∞
(X), and 

by Swan's theorem, every projective module is isomorphic to the 

module of sections of some bundle; the category of C
∞
(X)-modules 

and the category of vector bundles over X are equivalent. 

 If R is any ring and I is any left ideal in R, then I is a left R-module, 

and analogously right ideals in R are right R-modules. 

 If R is a ring, we can define the ring R
op

 which has the same 

underlying set and the same addition operation, but the opposite 

multiplication: if ab = c in R, then ba = c in R
op

. Any left R-

module M can then be seen to be a right module over R
op

, and any 

right module over R can be considered a left module over R
op

. 

 There are modules of a Lie algebra as well. 
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4.4 SUBMODULES AND 

HOMOMORPHISMS 

Suppose M is a left R-module and N is a subgroup of M. Then N is 

a submodule (or more explicitly an R-submodule) if for any n in N and 

any r in R, the product r ⋅ n is in N (or n ⋅ r for a right R-module). 

The set of submodules of a given module M, together with the two binary 

operations + and ∩, forms a lattice which satisfies the modular law: 

Given submodules U, N1, N2 of M such that N1 ⊂ N2, then the following 

two submodules are equal: (N1 + U) ∩ N2 = N1 + (U ∩ N2). 

If M and N are left R-modules, then a map f : M → N is 

a homomorphism of R-modules if for any m, n in M and r, s in R 

. 

This, like any homomorphism of mathematical objects, is just a mapping 

which preserves the structure of the objects. Another name for a 

homomorphism of R-modules is an R-linear map. 

A bijective module homomorphism is an isomorphism of modules, and 

the two modules are called isomorphic. Two isomorphic modules are 

identical for all practical purposes, differing solely in the notation for 

their elements. 

The kernel of a module homomorphism f : M → N is the submodule 

of M consisting of all elements that are sent to zero by f. 

The isomorphism theorems familiar from groups and vector spaces are 

also valid for R-modules. 

Given a ring R, the set of all left R-modules together with their module 

homomorphisms forms an abelian category, denoted by R-

Mod (see category of modules). 

Types of modules 

Finitely generated. An R-module M is finitely generated if there 

exist finitely many elements x1, ..., xn in M such that every element 

of M is a linear combination of those elements with coefficients from 

the ring R. 
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Cyclic. A module is called a cyclic module if it is generated by one 

element. 

Free. A free R-module is a module that has a basis, or equivalently, 

one that is isomorphic to a direct sum of copies of the ring R. These 

are the modules that behave very much like vector spaces. 

Projective. Projective modules are direct summands of free modules 

and share many of their desirable properties. 

Injective. Injective modules are defined dually to projective 

modules. 

Flat. A module is called flat if taking the tensor product of it with 

any exact sequence of R-modules preserves exactness. 

Torsionless module. A module is called torsionless if it embeds into 

its algebraic dual. 

Simple. A simple module S is a module that is not {0} and whose 

only submodules are {0} and S. Simple modules are sometimes 

called irreducible. 

Semisimple. A semisimple module is a direct sum (finite or not) of 

simple modules. Historically these modules are also 

called completely reducible. 

Indecomposable. An indecomposable module is a non-zero module 

that cannot be written as a direct sum of two non-zero submodules. 

Every simple module is indecomposable, but there are 

indecomposable modules which are not simple (e.g. uniform 

modules). 

Faithful. A faithful module M is one where the action of each r ≠ 

0 in R on M is nontrivial (i.e. r ⋅ x ≠ 0 for some x in M). Equivalently, 

the annihilator of M is the zero ideal. 

Torsion-free. A torsion-free module is a module over a ring such 

that 0 is the only element annihilated by a regular element (non zero-

divisor) of the ring. 

Noetherian. A Noetherian module is a module which satisfies 

the ascending chain condition on submodules, that is, every 
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increasing chain of submodules becomes stationary after finitely 

many steps. Equivalently, every submodule is finitely generated. 

Artinian. An Artinian module is a module which satisfies 

the descending chain condition on submodules, that is, every 

decreasing chain of submodules becomes stationary after finitely 

many steps. 

Graded. A graded module is a module with a decomposition as a 

direct sum M =  x Mx over a graded ring R =  x Rx such 

that RxMy ⊂ Mx+y for all x and y. 

Uniform. A uniform module is a module in which all pairs of 

nonzero submodules have nonzero intersection. 

4.5 RELATION TO REPRESENTATION 

THEORY 

If M is a left R-module, then the action of an element r in R is defined to 

be the map M → M that sends each x to rx (or xr in the case of a right 

module), and is necessarily a group endomorphism of the abelian 

group (M, +). The set of all group endomorphisms of M is denoted 

EndZ(M) and forms a ring under addition and composition, and sending a 

ring element r of R to its action actually defines a ring 

homomorphism from R to EndZ(M). 

Such a ring homomorphism R → EndZ(M) is called 

a representation of R over the abelian group M; an alternative and 

equivalent way of defining left R-modules is to say that a left R-module 

is an abelian group M together with a representation of R over it. 

A representation is called faithful if and only if the map R → 

EndZ(M) is injective. In terms of modules, this means that if r is an 

element of R such that rx = 0 for all x in M, then r = 0. Every abelian 

group is a faithful module over the integers or over some modular 

arithmetic Z/nZ. 

Generalizations 

Any ring R can be viewed as a preadditive category with a single object. 

With this understanding, a left R-module is just a covariant additive 
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functor from R to the category Ab of abelian groups, and right R-

modules are contravariant additive functors. This suggests that, if C is 

any preadditive category, a covariant additive functor 

from C to Ab should be considered a generalized left module over C. 

These functors form a functor category C-Mod which is the natural 

generalization of the module category R-Mod. 

Modules over commutative rings can be generalized in a different 

direction: take a ringed space (X, OX) and consider the sheaves of OX-

modules (see sheaf of modules). These form a category OX-Mod, and 

play an important role in modern algebraic geometry. If X has only a 

single point, then this is a module category in the old sense over the 

commutative ring OX(X). 

One can also consider modules over a semiring. Modules over rings are 

abelian groups, but modules over semirings are 

only commutative monoids. Most applications of modules are still 

possible. In particular, for any semiring S, the matrices over S form a 

semiring over which the tuples of elements from S are a module (in this 

generalized sense only). This allows a further generalization of the 

concept of vector space incorporating the semirings from theoretical 

computer science. 

Over near-rings, one can consider near-ring modules, a nonabelian 

generalization of modules. 

A module is a separate unit of software or hardware. Typical 

characteristics of modular components include portability, which allows 

them to be used in a variety of systems, and interoperability, which 

allows them to function with the components of other systems. The term 

was first used in architecture. 

In computer programming, especially in older languages such as PL/1, 

the output of the language compiler was known as an object module to 

distinguish it from the set of source language statements, sometimes 

known as the source module. In mainframe systems such as IBM's 

OS/360, the object module was then linked together with other object 

modules to form a load module. The load module was the executable 

code that you ran in the computer. 



Notes 

98 

Modular programming is the concept that similar functions should be 

contained within the same unit of programming code and that separate 

functions should be developed as separate units of code so that the code 

can easily be maintained and reused by different programs. Object-

oriented programming is a newer idea that inherently encompasses 

modular programming. 

2) In computer hardware and electronics, a module is a relatively 

compact unit in a larger device or arrangement that is designed to be 

separately installed, replaced, or serviced. For example, a single in-line 

memory module is a unit of random access memory (RAM) that you can 

add to a personal computer. 
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4.7 SUBMODULES 

It often happens that while working on one project, you need to use 

another project from within it. Perhaps it‘s a library that a third party 

developed or that you‘re developing separately and using in multiple 
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parent projects. A common issue arises in these scenarios: you want to be 

able to treat the two projects as separate yet still be able to use one from 

within the other. 

Here‘s an example. Suppose you‘re developing a website and creating 

Atom feeds. Instead of writing your own Atom-generating code, you 

decide to use a library. You‘re likely to have to either include this code 

from a shared library like a CPAN install or Ruby gem, or copy the 

source code into your own project tree. The issue with including the 

library is that it‘s difficult to customize the library in any way and often 

more difficult to deploy it, because you need to make sure every client 

has that library available. The issue with copying the code into your own 

project is that any custom changes you make are difficult to merge when 

upstream changes become available. 

Git addresses this issue using submodules. Submodules allow you to 

keep a Git repository as a subdirectory of another Git repository. This 

lets you clone another repository into your project and keep your 

commits separate. 

Starting with Submodules 

We‘ll walk through developing a simple project that has been split up 

into a main project and a few sub-projects. 

Let‘s start by adding an existing Git repository as a submodule of the 

repository that we‘re working on. To add a new submodule you use 

the git submodule add command with the absolute or relative URL of the 

project you would like to start tracking. In this example, we‘ll add a 

library called ―DbConnector‖ 

 

Call a subgroup M ′ of an A-module M a submodule if M ′ is closed 

under scalar multiplication, that is, 

( ∀ a   A)( ∀ x   M ′ ) ax   M ′ . 

In this case we can form the quotient group  

M/M ′ = { x + M ′ | x   M } , 
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which becomes an A-module by defining 

a(x + M′) = ax + M′ (∀a   A , x   M) . 

Call M/M′ the quotient of M by M′ 

Easy to see: 

The natural map: 

M → M/M′ , x 7→ x + M′ 

is a surjective module homomorphism with kernel M′ ,  

which induces a one-one correspondence between submodules of M/M′ 

and submodules of M which contain M′ . 

Let f : M → N be a module homomorphism.  

Terminology and notation: write 

ker f = { x   M | f(x) = 0 }, 

im f = f(M) = { f(x) | x   M }, 

coker f = N/im f 

for the kernel, image and cokernel of f respectively. 

Easy to check: 

ker f is a submodule of M , and 

im f is a submodule of N (so coker f makes sense). 

Consider a submodule M′ of M such that  

M′ ⊆ ker f . 

Define 

 f : M/M′ → N by x + M′ 7→ f(x) (∀x   M) .  

This is well-defined because if 

x + M′ = x0 + M′ 
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then x − x0   M′ ⊆ ker f , so that 

f(x) = f(x − x0 + x0) = f(x − x0) + f(x0) 

= 0 + f(x0) = f(x0) . 

It is routine to verify that f is a module homomorphism, and 

ker f = ker f/M′ 

Call f the homomorphism induced by f . 

If M′ = ker f then f becomes one-one, which proves another version of 

the 

4.8 QUOTIENT MODULE 

In algebra, given a module and a submodule, one can construct 

their quotient module.
 

This construction, described below, is very similar to that of a quotient 

vector space. It differs from analogous constructions of quotient 

groups and quotient rings by the fact that in these cases, the subspace that 

is used for defining the quotient is not of the same nature as the ambient 

space (that is, the quotient of a group by a subgroup is not always a 

group, and a quotient ring is the quotient of a ring by an ideal, not a 

subring). 

Given a module A over a ring R, and a submodule B of A, the quotient 

space A/B is defined by the equivalence relation 

 if and only if  

for any a and b in A. The elements of A/B are the equivalence classes [a] 

= {a + b : b in B}. 

The addition operation on A/B is defined for two equivalence classes as 

the equivalence class of the sum of two representatives from these 

classes; and scalar multiplication of elements of A/B by elements of R is 

defined similarly. Note that it has to be shown that these operations are 

well-defined. Then A/B becomes itself an R-module, called the quotient 

module. In symbols, [a] + [b] = [a + b], and r · [a] = [r · a], for 

all a, b in A and r in R 
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Examples 

Consider the ring R of real numbers, and the R-module A = R[X], that is 

the polynomial ring with real coefficients. Consider the submodule 

B = (X
2
 + 1) R[X] 

of A, that is, the submodule of all polynomials divisible by X
2
 + 1. It 

follows that the equivalence relation determined by this module will 

be 

P(X) ~ Q(X) if and only if P(X) and Q(X) give the same 

remainder when divided by X
2
 + 1. 

Therefore, in the quotient module A/B, X
2
 + 1 is the same as 0; so 

one can view A/B as obtained from R[X] by setting X
2
 + 1 = 0. 

This quotient module is isomorphic to the complex numbers, 

viewed as a module over the real numbers R. 

Definition Let R be a ring and let M, N be R-modules.  

1 A map υ : M → N is an R-module homomorphism provided  

 υ(x + y) = υ(x) + υ(y), ∀x, y,   M, and 2 υ(rx) = rυ(x), ∀r   R; x   M.  

2 An R-module isomorphism is an R-module homomorphism which is 

also bijective.  

3 Suppose υ : M → N is an R-module homomorphism. ker(υ) = {m   M 

| υ(m) = 0N}. υ(M) = {υ(m) | m   M}.  

4 HomR(M, N) = {υ : M → N | υ is an R-module homomorphism}. 

 

Definition Let R be a ring and let M, N be R-modules.  

1 A map υ : M → N is an R-module homomorphism provided  

υ(x + y) = υ(x) + υ(y), ∀x, y,   M, and 

 2 υ(rx) = rυ(x), ∀r   R; x   M. 2 An R-module isomorphism is an R-

module homomorphism which is also bijective.  

3 Suppose υ : M → N is an R-module homomorphism. ker(υ) = {m   M 

| υ(m) = 0N}. υ(M) = {υ(m) | m   M}. 

 4 HomR(M, N) = {υ : M → N | υ is an R-module homomorphism}. 
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Note For an R-module homomorphism υ : M → N,  

ker(υ) is a submodule of M and  

υ(M) is a submodule of N. 

 

Let (T be a kernel functor. A A-module E is called a-injective if it has the 

following property: if M is any module and N is a submodule of M such 

that u(M/N) = M/N, th en every A-homomorphism from N to E extends 

to a homomorphism from M to E. The module E is called faithfulb u-

injective if, in the same notation, the homomorphism from N to E has a 

uniqzze extension to M.  

PROPOSITION . The followi?zg are equivalent:  

(1) E is faithfully u-injective.  

(2) E is a-injective arzd o(E) = 0. 

Proof. (1) * (2)  

Clearly (1) implies that E is a-injective. Furthermore, the zero map from 

0 C u(E) to E has a unique extension to o(E) and hence u(E) = 0.  

(2) * (1) 

 If NC M is such that u(M/N) = M/N, then the only homomorphism 

fromzM/N into a u-torsion-free module is 0. Hence (2) => (1). Exactly as 

for the usual absolute notion of injectivity, we have: 

PROPOSITION . The following are equivalent:  

(I) E is u-irzjective.  

(2) If % E y-o and g : 5X + E is a A-homomorphism, tlzerz g extends to 

A. 

Proof. (1) + (2) is a consequence of the definition. 

 (2) * (1)  

Suppose that f : N -+ E is a fl-homomorphism where N is a submodule of 

M such that M/N is u-torsion. If N‘ is a submodule of M which contains 

N, then M/N‘ is also a a-torsion module. Consider all pairs (N‘, f ‗) with 
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N‘ as above, and f‘ an extension off to N‘. In an obvious ordering, Zorn‘s 

lemma is applicable, and there is a largest extension off. Let that be N 

and f itself. We must then show that N = M. If x E M, the fact that 

u(M/N) = M/N implies that ‗% = {a E fl 1 ax E N} is an ideal in Y0 . 

Define g : 2l ---f E by 

g(u) =$(a.~). Clearly g is a A-homomorphism, so that (2) asserts the 

extendibility of g to A. Namely, there is an element r] of E such that g(u) 

= a~ for a E 58. Now define f‘ : N + Ax -+ E by f‘(y + a~) =f(y) + UT. 

Because a E ‗9I implies that f(azc) = a~, the function f‘ is well-defined 

and is a A-homomorphism, and f‘ coincides with f on N. The maximality 

of N implies that x E N, i.e., that N = M. 

In the particular case where 0 = 0 every module is faithfully u-injective. 

If 0 = co, then a-injectivity is the same as absolute injectivity. However 

in this case the only faithfully o-injective module is 0. (In fact, 0 is the 

only u-torsion-free module.)  

Before entering into the question of the existence of o-injective modules, 

we consider some further simple properties of such modules. 

Check In Progress-II 
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PROPOSITION . Suppose that 0 --f F -+ E -+ L --f 0 is an exact 

sequence in which E is a-injective and L is cs-torsion-free. Then F is a-

injective. 

Proof. Let 2I be an ideal in .FO and f : ?f -+ F a A-homomorphism. 

Because of the o-injectivity of E, there is an element x E E such thatf (a) 

= a~ for a E ?I. In particular, ‗%x = f (5X) CF, and hence the image of 

IV in L lies in o(L). We have assumed that a(L) = 0, hence x‘ ~3‘ and 

thus F is cT-injective. 

An analogue of the last result which we shall find useful is the following: 

PROPOSITION . Suppose that 0 -+ F --f E + L -+ 0 is an exact 

sequence such that F is cJ-injective and L is a a-torsion module. Then the 

sequence splits, If in addition E is a-torsion-free, then F = E. 

 PROOf. If we apply the definition to F, then the identity map from F to 

itself extends to a map from E to F. This implies that the sequence splits, 

and E is isomorphic to the direct sum of F and L. If w(E) = 0 then also 

a(L) = 0, while u(L) = L. Hence L = 0.  

The test for a-injectivity of a module is somewhat simplified if one 

already knows of the module under consideration that it is o-torsion-free. 

Such situations will arise frequently. 

LEMMA . Let I be a o-torsion-free module, let N be a submodule of a 

module ;―I such that M/N is a a-torsion module and Zet f : A- E be a 

homomorphism. Suppose there exists a submodule N‘ of N such that 

N/N‘ is a a-tomian module and such that the restriction off to N‘ extends 

to a homomorphism ,from M to E. Then f extends to a homomorphism 

from &I to E. 

Proof. Denote by f‘ the restriction off to N‘ and by g its extension to ild. 

Then f andg I,,, are homomorphisms from N to E which coincide on N‘. 

Hence 

f -g IN induces a homomorphism from N/N‘ to E while u(N/N‘) = N/N‘ 

and a(E) = 0. Hence f and g IN coincide and g is an extension off. We 

shall apply the lemma immediately to obtain the following very useful 
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criterion. (It should be remarked that there is no analogue of this result in 

the ordinary theory of absolute injective modules.) 

PROPOSITION . Let u be an idempotent kernel functor, E a o-torsion-

free module and M a submodule of E such that E/M is a a-torsion 

module. Assume further that for every ideal % E YFO every 

homomorphism from % to M extends to a homomorphism from A to E. 

Then E is (faithfully) o-injective 

Proof. Let 52l be an ideal in y0 and f : 2I -+ E a homomorphism. Let 8 = 

{b E 2I 1 f(b) E M), so that 8 C 9I and B = f -‗(f (2X) n M). Then 2Ij23 is 

isomorphic to a submodule of E/M and therefore %/S is u-torsion. Since 

u is idempotent, it follows that 8 is also in y0 . The restriction off to 23 

maps !$3 into M and hence, by hypothesis, this restriction extends to a 

homomorphism from /l to E. By the lemma, f extends to a 

homomorphism from fl to E. Thus E is u-injective. 

From now on we shall be principally concerned with idempotent kernel 

functors. If u is such a functor and M is a A-module, we shall now 

consider the question of assigning to M a faithfully a-injective module 

which is minimal in some sense. We start under the assumption that 

u(M) = 0. Given such a module, let G be an absolute injective module 

which is an essential extension of M. Certainly G is a u-injective module. 

Furthermore, 0 = U(M) = M n U(G), so that the fact that G is an essential 

extension of M implies that u(G) = 0. Thus G is a faithfully a-injective 

module. Now let E be the submodule of G, containing ill, which maps 

onto o(G/M) under the map G -+ G/M. Then G/E is isomorphic to 

G/M/u(G/M), and the fact that u is idempotent implies that G/E is u-

torsion-free. We may now apply to conclude that E is also faithfully u-

injective. Furthermore, E/M is isomorphic to u(G/M), so that E/M is a u-

torsion module. Thus we have proved the following:  

THEOREM. Let u be an idempotent kerneifunctor. If M is a u-torsion-

free module, then there is a faithfully u-injective module E containing M 

and such that E/M is u-torsion.  

The module E just constructed is an essential extension of M because of 

the particular way it was arrived at. Actually some of its properties 
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already imply that E is an essential extension of M. Since we shall need 

to use this later, we isolate this fact. 

LEMMA. Let a be a kernel functor, X a u-torsion-free module and Y a 

submodule of X such that X/Y is a o-torsion nwdule. Then X is an 

essential extension of Y. 

Proof. If x E X, the fact that a(X/Y) = X/Y implies the existence of an 2l 

E 3PU with %x C Y. Also, because c(X) = 0, ‗%x cannot be 0 unless x = 

0. Hence, if x + 0, then 2Ix C Y n Ax and %x f 0.  

The module E whose existence is asserted in that theorem is unique in a 

strong sense. Namely, if E‘ is another module with the properties as in 

then there is a zcnique isomorphism from E to E‘ which is the identity on 

M. Namely, the fact that o(E/M) = E/M combined with the fact that E‘ is 

faithfully cr-injective implies that the identity map from M + iV C E‘ has 

a unique extension to a homomorphism from E to E‘. Furthermore E is 

an essential extension of M, so that this homomorphism is a 

monomorphism. Thus E is isomorphic to a module squeezed between M 

and E‘.  

Let u be an idempotent kernel functor. Let iVi be a u-torsion-free 

module. Denote by 52 the set of pairs (2I, f) where ‗$I is an ideal in SU 

andf : 2I -+ M is a A-homomorphism. Two elements (2l, f) and (W,f‘) of 

!2 are called equivalent, (8, f) - (7‗,f‘), if there is an ideal 8 E TV with 23 

C (LT n 3 such that f and f‘ coincide on 23. This is obviously an 

equivalent relation; we denote by QJM) the set of equivalence classes. 

We shall also use the symbol [CZ, f ] for the equivalence class of I.[, f j. 

If (XS) and (26 gj are in 52, set K = rU: n 23 and letf‘ andg‘ be the 

restrictions to (5 off and g, respectively. Then (!!I, f) - (6, f ‗) and (23, g) 

- ((.I., g‘). It is a simple matter to verify that [c, f‘ + g‘] depends only on 

[%, f] and [B,g] and not on the particular choice of representatives ‗%, f, 

etc. It is equally simple to verify that the composition just defined gives 

Q,(M) the structure of an abelian group. Let (‗2,f) G Q and let x be and. 

Let (‗2,f) G Q and let x be an element of fl. Then, there is an ideal 23 E 

rU such that 8x C $9l. Define g : 23 -+ M by g(b) =f(bx). Then (‗B, g) E 

Q and, as above, [23, g] is determined by [?I, f] and x. We denote the 

equivalence class [S,g] by xc%, f]. (Note the side!) This defines a 
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composition A x Q,(M) -+ g$k?), and we leave to the reader the simple 

verification of the details that this gives Qo(M) the structure of a left fl-

module. 

 If N E M, definej(x) : /l + M byj(x)(a> = ax. Then (A,i(x)) is an element 

of 0. Define i : M + Q,(M) by i(x) = [A,i(z)]. That i is a A-

homomorphism is trivial. Now x E M is in the kernel of i if (A, i(x)) N 

(A, 0), or if there is an ideal %!I E Y- such that i(x) vanishes on 2I. This 

latter condition is the same as $?I?[x =0, or that x E u(M). Since we have 

assumed that u(M) = 0, it follows that i is a monomorphism. 

 Let f E&(M), and let (%,f) b e a representative of f in Q. If a E 2I, then 

at = [A,if(a)], so that Fu,$ C i(M). Thus, Q0(M)/i(A4) is a o-torsion 

module. Furthermore, if a4 = 0, then by the discussion in the previous 

paragraph, f(a) = 0. Hence, if 2I[ = 0, then f = 0 and 5 = 0. Thus, for 5 # 

0, ‗2I.$ C i(M) n At, and 2If f 0. This shows that Q,(M) is an essential 

extension of M. In particular, because G(M) = 0, and M is isomorphic 

with i(M), we conclude that c+&(M)> = 0. Finally, to verify that QO(M) 

is o-injective we use. If 2I E Y0 and f : 2I + M is a homomorphism, then 

form E = [‗$I, f] E Q,(M). Exactly as above, if a E ‗$I, then at = [A, jf 

(u)], or at = if (a), showing that f extends to a homomorphism from A to 

Q,(M). 

Still assuming that G is an idempotent kernel functor, let M be an 

arbitrary left A-module. Then, the module of quotients of M with respect 

to CJ is defined to be QO(M/u(M)) together with the map from M to 

QJM/u(M)) gotten by composing the homomorphism M-z- M/u(M) with 

the monomorphism M/u(M) -+ Q,(M/u(M)). If necessary we shall denote 

the map M--f Q,(M/o(M)) by i0 . Furthermore, we shall also use the 

notation &(M) in place of Q,(M/u(M)).  

Let M and A/‘ be A-modules, and let f : M‘-+ M be a homomorphism. 

Then f induces a homomorphism f‘ : M‘/o(M‘) -+ M/u(M), and the 

properties of Q0 imply the existence of a unique homomorphism fO : 

QO(M) -+ QJM‘) which is such that the diagram 

is commutative. The pair M + Q,(M) and f .+ fv forms a covariant 

functor, and it is this functor, together with i, : M + Q,(M), that 

constitutes the formation of the module of quotients with respect to CT. 



Notes 

109 

We emphasize that the module of quotients is defined here only for 

idempotent kernel functors. We shall describe briefly the connection 

between the general construction just given and the familiar situation in 

commutative rings. Let A be a commutative ring and let S be a subset of 

A closed under multiplication. Let Y be the set of ideals of A which 

contain an element of S. Then Y is and ideal topology in A (because S is 

closed under multiplication) and hence defines a kernel functor u. If M is 

a module, then a(M) consists of the elements annihilated by some 

element of S. That this functor is idempotent is well-known, and is due to 

the fact that S is closed under multiplication. The extreme case where u = 

0 corresponds to the case where S consists entirely of units of A, and 0 = 

03 corresponds to the case wherein S contains the zero element of A. 

 

4.10 LET US SUM UP 

In This units we study submodule and its properties. We study 

submodule and its proposition with example. We study quotient module 

and ring with its lemma and properties.  

1. A bimodule is a module that is a left module and a right module 

such that the two multiplications are compatible. 

2. If R is commutative, then left R-modules are the same as right R-

modules and are simply called R-modules. 

3. If M and N are left R-modules, then a map f : M → N is 

a homomorphism of R-modules if for any m, n in M and r, s in R. 

4. Cyclic. A module is called a cyclic module if it is generated by 

one element. 

5. Flat. A module is called flat if taking the tensor product of it with 

any exact sequence of R-modules preserves exactness. 

6. Torsion-free. A torsion-free module is a module over a ring such 

that 0 is the only element annihilated by a regular element (non 

zero-divisor) of the ring. 
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7. Graded. A graded module is a module with a decomposition as a 

direct sum M =  x Mx over a graded ring R =  x Rx such 

that RxMy ⊂ Mx+y for all x and y. 

8. Uniform. A uniform module is a module in which all pairs of 

nonzero submodules have nonzero intersection. 

4.11 KEYWORD 

Submodule : A module making up part of a larger module 

Monomorphism : A monomorphism is an injective 

homomorphism 

4.12 QUESTIONS FOR REVIEW  

1 . Let M = Mmn(R) be the set of all m × n matrices with entries in R. 

Then M is an R-module, where addition is ordinary matrix addition, and 

multiplication of the scalar c by the matrix A means multiplication of 

each entry of A by c.  

2. Every abelian group A is a Z-module. Addition and subtraction is 

carried out according to the group structure of A; the key point is that we 

can multiply x   A by the integer n. If n > 0, then nx = x + x + ··· + x (n 

times); if n < 0, then nx = −x − x −···− x (|n| times). 

In all of these examples, we can switch from left to right modules by a 

simple notational change. This is definitely not the case in the next 

example. 

3 Let I be a left ideal of the ring R; then I is a left R-module. (If x   I and 

r   R then rx (but not necessarily xr) belongs to I.) Similarly, a right 

ideal is a right R-module, and a two-sided ideal is both a left and a right 

R-module. 

An R-module M permits addition of vectors and scalar multiplication. If 

multiplication of vectors is allowed, we have an R-algebra. 

4 Every commutative ring R is an algebra over itsel 
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5 An arbitrary ring R is always a Z-algebra 

6 If R is a commutative ring, then Mn(R), the set of all n × n matrices 

with entries in R, is an R-algebra. 

7 If R is a commutative ring, then the polynomial ring R[X] is an R-

algebra, as is the ring R[[X]] of formal power series;). The compatibility 

condition is satisfied because an element of R can be regarded as a 

polynomial of degree 0. 

8. If E/F is a field extension, then E is an algebra over F. This continues 

to hold if E is a division ring, and in this case we say that E is a division 

algebra over F 

9 If I is an ideal of the ring R, show how to make the quotient ring R/I 

into a left R-module, and also show how to make R/I into a right R-

module.  

10. Let A be a commutative ring and F a field. Show that A is an algebra 

over F if and only if A contains (an isomorphic copy of) F as a subring 

11. Give an example of an R-module M with nonzero elements r   R and 

x   M such that rx = 0. 

12. Let M be the additive group of rational numbers. Show that any two 

elements of M are linearly dependent (over the integers Z).  

13. Continuing Problem 4, show that M cannot have a basis, that is, a 

linearly independent spanning set over Z.  

14. Prove the modular law for subgroups of a given group G: With the 

group operation written multiplicatively,  

A(B ∩ C)=(AB) ∩ C 

4.13 ANSWER FOR CHECK IN 

PROGRESS 

Check In Progress-I 

Answer Q. 1 Check in Section 1.4 
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  Q. 2 Check in Section 1.3 

Check In Progress-II 

Answer Q. 1 Check in Section 3 

  Q. 2 Check in Section 2 
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UNIT 5 - HOMOMORPHISM AND 

ISOMORPHISM 

 

STRUCTURE 

5.0 Objective 

5.1 Introduction : Homomorphism 

5.1.1 Endomorphism 

5.1.2 Automorphism 

5.1.3 Monomorphism 

5.1.4 Epimorphism 

5.1.5 Kernal 

5.2  Homomorphisms and Matrices  

     5.2.1  Examples of Group Homomorphism 

5.3 Isomorphism Theorem 

5.4 Let Us Sum Up 

5.5 Keyword 

5.6 Questions For Review 

5.7 Answer For Check in Progress 

5.8 Suggestion Reading And References 

 

5.0 OBJECTIVE 

 Learn Endomorphism 

 Learn Monomorphism 

 Learn group Homomorphism 
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 Work on Epimorphism 

 Know about kernel  

5.1 INTRODUCTION: HOMOMORPHISM 

In algebra, a homomorphism is a structure-preserving map between 

two algebraic structures of the same type (such as two groups, two rings, 

or two vector spaces). Theword homomorphism comes from the ancient 

Greek language: ὁμόρ (homos) meaning "same" 

and μοπυή (morphe) meaning "form" or "shape". However, the word was 

apparently introduced to mathematics due to a (mis)translation of 

German ähnlich meaning "similar" to ὁμόρ meaning "same". 

Homomorphisms of vector spaces are also called linear maps, and their 

study is the object of linear algebra. 

The concept of homomorphism has been generalized, under the name 

of morphism, to many other structures that either do not have an 

underlying set, or are not algebraic. This generalization is the starting 

point of category theory. 

A homomorphism may also be an isomorphism, an endomorphism, 

an automorphism, etc. (see below). Each of those can be defined in a way 

that may be generalized to any class of morphisms. 

 

Definition 

A homomorphism is a map between two algebraic structures of the same 

type (that is of the same name), that preserves the operations of the 

structures. This means a map  between two sets A, B equipped with the 

same structure such that, if  is an operation of the structure (supposed 

here, for simplification, to be a binary operation), then 

for every pair x, y of elements of A. says often that f preserves the 

operation or is compatible with the operation. 

The operations that must be preserved by a homomorphism include 0-ary 

operations, that is the constants. In particular, when an identity element is 

required by the type of structure, the identity element of the first structure 
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must be mapped to the corresponding identity element of the second 

structure. 

For example: 

 A semigroup homomorphism is a map between semigroups that 

preserves the semigroup operation. 

 A monoid homomorphism is a map between monoids that preserves 

the monoid operation and maps the identity element of the first 

monoid to that of the second monoid (the identity element is a 0-ary 

operation). 

 A group homomorphism is a map between groups that preserves the 

group operation. This implies that the group homomorphism maps 

the identity element of the first group to the identity element of the 

second group, and maps the inverse of an element of the first group 

to the inverse of the image of this element. Thus a semigroup 

homomorphism between groups is necessarily a group 

homomorphism. 

 A ring homomorphism is a map between rings that preserves the ring 

addition, the ring multiplication, and the multiplicative identity. 

Whether the multiplicative identity is to be preserved depends upon 

the definition of ring in use. If the multiplicative identity is not 

preserved, one has a rng homomorphism. 

 A linear map is a homomorphism of vector space, That is a group 

homomorphism between vector spaces that preserves the abelian 

group structure and scalar multiplication. 

 A module homomorphism, also called a linear map 

between modules, is defined similarly. 

 An algebra homomorphism is a map that preserves 

the algebra operations. 

 An algebraic structure may have more than one operation, and a 

homomorphism is required to preserve each operation. Thus a 

map that preserves only some of the operations is not a 

homomorphism of the structure, but only a homomorphism of the 

substructure obtained by considering only the preserved 

operations. For example, a map between monoids that preserves 
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the monoid operation and not the identity element, is not a 

monoid homomorphism, but only a semigroup homomorphism. 

 The notation for the operations does not need to be the same in 

the source and the target of a homomorphism. For example, 

the real numbers form a group for addition, and the positive real 

numbers form a group for multiplication. The exponential 

function 

 and is thus a homomorphism between these two groups. It is even 

an isomorphism (see below), as its inverse function, the natural 

logarithm. 

 and is also a group homomorphis 

5.1.2 Endomorphism 

An endomorphism is a homomorphism whose domain equals 

the codomain, or, more generally, a morphism whose source is equal to 

the target. 

The endomorphisms of an algebraic structure, or of an object of 

a category form a monoid under composition. 

The endomorphisms of a vector space or of a module form a ring. In the 

case of a vector space or a free module of finite dimension, the choice of 

a basis induces a ring isomorphism between the ring of endomorphisms 

and the ring of square matrices of the same dimension. 

5.1.3 Automorphism 

An automorphism is an endomorphism that is also an isomorphism. 

The automorphisms of an algebraic structure or of an object of a category 

form a group under composition, which is called the automorphism 

group of the structure. 

Many groups that have received a name are automorphism groups of 

some algebraic structure. For example, the general linear group  is the 

automorphism group of a vector space of dimension n over a field k. 

The automorphism groups of fields were introduced by Évariste 

Galois for studying the roots of polynomials, and are the basis of Galois 

theory. 
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5.1.4 Monomorphism 

Algebraic structures, monomorphisms are commonly defined 

as injective homomorphisms. 

In the more general context of category theory, a monomorphism is 

defined as a homomorphism that is left cancelable. This means that a 

(homo)morphism  is a monomorphism if, for any pair g, h of morphisms 

from any other object C to A, then  implies g = h. 

These two definitions of monomorphism are equivalent for all common 

algebraic structures. More precisely, they are equivalent for fields, for 

which every homomorphism is a monomorphism, and 

for varieties of universal algebra, that is algebraic structures for which 

operations and axioms (identities) are defined without any restriction 

(fields are not a variety, as the multiplicative inverse is defined either as 

a unary operation or as a property of the multiplication, which are, in 

both cases, defined only for nonzero elements). 

In particular, the two definitions of a monomorphism are equivalent 

for sets, magmas, semigroups, monoids, groups, rings, fields, vector 

spaces and modules. 

A split monomorphism is a homomorphism that has a left inverse and 

thus it is itself a right inverse of that other homomorphism. That is, a 

homomorphism  is a split homomorphism if there exists a 

homomorphism  such that  A split monomorphism is always a 

monomorphism, for both meanings of monomorphism. For sets and 

vector spaces, every monomorphism is a split homomorphism, but this 

property does not hold for most common algebraic structures. 

5.1.5 Epimorphism 

In algebra, epimorphisms are often defined 

as surjective homomorphisms. On the other hand, in category 

theory, epimorphisms are defined as right cancelable. This means that a 

(homo)morphism  is an epimorphism if, for any pair g, h of morphisms 

from B to any other object C, the equality  implies g = h. 

A surjective homomorphism is always right cancelable, but the converse 

is not always true for algebraic structures. However, the two definitions 
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of epimorphism are equivalent for sets, vector spaces, abelian 

groups, modules (see below for a proof), and groups. The importance of 

these structures in all mathematics, and specially in linear 

algebra and homological algebra, may explain the coexistence of two 

non-equivalent definitions. 

Algebraic structures for which there exist non-surjective epimorphisms 

include semigroups and rings. The most basic example is the inclusion 

of integers into rational numbers, which is an homomorphism of rings 

and of multiplicative semigroups. For both structures it is a 

monomorphism and a non-surjective epimorphism, but not an 

isomorphism. 

A wide generalization of this example is the localization of a ring by a 

multiplicative set. Every localization is a ring epimorphism, which is not, 

in general, surjective. As localizations are fundamental in commutative 

algebra and algebraic geometry, this may explain why in these areas, the 

definition of epimorphisms as right cancelable homomorphisms is 

generally preferred. 

A split epimorphism is a homomorphism that has a right inverse and 

thus it is itself a left inverse of that other homomorphism. That is, a 

homomorphism  is a split epimorphism if there exists a 

homomorphism  such that  A split epimorphism is always an 

epimorphism, for both meanings of epimorphism. For sets and vector 

spaces, every epimorphism is a split epimorphism, but this property does 

not hold for most common algebraic structures. 

In summary, one hasthe last implication is an equivalence for sets, vector 

spaces, modules and abelian groups; the first implication is an 

equivalence for sets and vector spaces. 

 

Check in Progress-I 

Q. 1 Define Epimorphism. 

Solution 

……………………………………………………………………. 

…………………………………………………………………………… 
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……………………………………………………………………………. 

…………………………………………………………………………… 

Q. 2 Define Automorphism. 

Solution 

……………………………………………………………………. 

…………………………………………………………………………… 

……………………………………………………………………………. 

………………………………………………………………………… 

 

5.1.7 Kernel 

The kernel of a ring homomorphism  is the set of all elements 

of  which are mapped to zero. It is the kernel of  as a homomorphism 

of additive groups. It is an ideal of . 

Any homomorphism f : X → Y defines an equivalence 

relation ~ on X by a ~ b if and only if f(a) = f(b). The relation ~ is called 

the kernel of f. It is a congruence relation on X. The quotient set X / 

~ can then be given a structure of the same type as X, in a natural way, by 

defining the operations of the quotient set by [x] ∗ [y] = [x ∗ y], for each 

operation ∗ of X. In that case the image of X in Y under the 

homomorphism f is necessarily isomorphic to X / ~; this fact is one of 

the isomorphism theorems. 

When the algebraic structure is a group for some operation, 

the equivalence class K of the identity element of this operation suffices 

to characterize the equivalence relation. In this case, the quotient by the 

equivalence relation is denoted by X/K (usually read as "X mod K"). Also 

in this case, it is K, rather than ~, that is called the kernel of f. The 

kernels of homomorphisms of a given type of algebraic structure are 

naturally equipped with some structure. This structure type of the kernels 

is the same as the considered structure, in the case of abelian 

groups, vector spaces and modules, but is different and has received a 

specific name in other cases, such as normal subgroup for kernels 

of group homomorphisms and ideals for kernels of ring 
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homomorphisms (in the case of non-commutative rings, the kernels are 

the two-sided ideals). 

5.2 HOMOMORPHISMS AND MATRICES  

Homomorphisms are the maps between algebraic objects. There are two 

main types: group homomorphisms and ring homomorphisms. (Other 

examples include vector space homomorphisms, which are generally 

called linear maps, as well as homomorphisms of modules and 

homomorphisms of algebras.) 

Generally speaking, a homomorphism between two algebraic 

objects A,B is a function f:A→B which preserves the algebraic structure 

on A and B. That is, if elements in A satisfy some algebraic equation 

involving addition or multiplication, their images in B satisfy the same 

algebraic equation. The details of the definitions of homomorphisms in 

various contexts depend on the algebraic structures of A and B. 

Suppose that M is a free R-module with a finite basis of n elements v1,...,vn, 

sometimes called a free module of rank n. We know from Section 4.3 

that M is isomorphic to the direct sum of n copies of R. Thus we can 

regard M as Rn, the set of all n-tuples with components in R. Addition 

and scalar multiplication are performed componentwise, as in (4.1.3),  

Example . Note also that the direct sum coincides with the direct product, 

since we are summing only finitely many modules. Let N be a free R-

module of rank m, with basis w1,...,wm, and suppose that f is a module 

homomorphism from M to N. Just as in the familiar case of a linear 

transformation on a finite-dimensional vector space, we are going to 

represent f by a matrix. For each j, f(vj ) is a linear combination of the 

basis elements wj , so that f(vj ) = m i=1 aijwi, j = 1,...,n (1) where the aij 

belong to R.    

 It is natural to associate the m × n matrix A with the homomorphism f, 

and it appears that we have an isomorphism of some sort, but an 

isomorphism of what? If f and g are homomorphisms of M into N, then f 

and g can be added (and subtracted): (f + g)(x) = f(x) + g(x). If f is 

represented by the matrix A and g by B, then f + g corresponds to A + B. 
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This gives us an abelian group isomorphism of HomR(M,N), the set of 

all R-module homomorphisms from M to N, and Mmn(R), the set of all 

m × n matrices with entries in R. In addition, Mmn(R) is an R-module, 

so it is tempting to say ―obviously, we have an R-module isomorphism‖. 

But we must be very careful here. If f  HomR(M,N) and s   R, we can 

define sf in the natural way: (sf)(x) = sf(x). However, if we carry out the 

―routine‖ check that sf  HomR(M,N), there is one step that causes alarm 

bells to go off:   

where the aij belong to R. It is natural to associate the m × n matrix A 

with the homomorphism f, and it appears that we have an isomorphism 

of some sort, but an isomorphism of what? If f and g are 

homomorphisms of M into N, then f and g can be added (and subtracted): 

(f + g)(x) = f(x) + g(x). If f is represented by the matrix A and g by B, 

then f + g corresponds to A + B. This gives us an abelian group 

isomorphism of HomR(M,N), the set of all R-module homomorphisms 

from M to N, and Mmn(R), the set of all m × n matrices with entries in 

R. In addition, Mmn(R) is an R-module, so it is tempting to say 

―obviously, we have an R-module isomorphism‖. But we must be very 

careful here. If f  HomR(M,N) and s   R, we can define sf in the natural 

way: (sf)(x) = sf(x). However, if we carry out the ―routine‖ check that sf 

 HomR(M,N), there is one step that causes alarm bells to go off:   

(sf)(rx) = sf(rx) = srf(x), but r(sf)(x) = rsf(x)  

and the two expressions can disagree if R is not commutative. Thus 

HomR(M,N) need not be an R-module. Let us summarize what we have 

so far 
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Proposition  The set of even permtuations in Sn is a subgroup of Sn. 

This group is called the alternating group of order n, and is denoted by 

An. Moreover, |An| = n! 2 . 

Proof (Sketch) If σ, τ   An then they can be written as the product of an 

even number of transpositions, so στ can be as well (by concatenation). 

Moreover, since σ and σ −1 have the same number of cycles of the same 

lengths in their disjoint cycle decomposition, they can be written as the 

product of the same number of transposition so σ  An =⇒ σ −1   An. 

To see that |An| = n! 2 , observe that the set map T : An → Sn\An 

defined by T(σ) = (1 2)σ is a bijection: |An| = |Sn\|An|, and the result 

follows. 

5.1.1 Examples Of Group Homomorphism 

A group homomorphism is a map  between two groups such 

that the group operation is preserved:  for 

all , where the product on the left-hand side is in  and on the 

right-hand side in . 

As a result, a group homomorphism maps the identity element in  to 

the identity element in : . 

Note that a homomorphism must preserve the inverse map 

because , so . 

In particular, the image of  is a subgroup of  and the group kernel, 

i.e.,  is a subgroup of . The kernel is actually a normal subgroup, 

as is the preimage of any normal subgroup of . Hence, any (nontrivial) 

homomorphism from a simple group must be injective. 

Here’s some examples of the concept of group homomorphism. 
 

Example 1: 

Let G={1,−1,i,−i}G={1,−1,i,−i}, which forms a group under 

multiplication and I=I= the group of all integers under addition, prove 
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that the mapping ff from II onto GG such that f(x)=in∀n If(x)=in∀n I is 

a homomorphism. 

Solution: Since f(x)=in,f(m)=imf(x)=in,f(m)=im, for all m,n Im,n I 

f(m+n)=im+n=im⋅in=f(m)⋅f(n)f(m+n)=im+n=im⋅in=f(m)⋅f(n) 

Hence ff is a homomorphism. 

Example 2: 

Show that the mapping ff of the symmetric group PnPn onto the 

multiplicative group G′={1,−1}G′={1,−1} defined 

by f(α)=1f(α)=1 or −1−1. 

According as αα is an even or odd permutation in PnPn is a 

homomorphism of PnPn onto G′G′. 

Solution: We know that the product of two permutations both even or 

both odd is even while the product of one even and one odd permutation 

is odd. We shall show that 

f(αβ)=f(α)f(β)∀α,β Pnf(αβ)=f(α)f(β)∀α,β Pn 

(i) if α,βα,β are both even, then 

f(αβ)=1=1⋅1=f(α)⋅f(β)f(αβ)=1=1⋅1=f(α)⋅f(β) 

 

Definition. Let (G, ·) and (G0 , ?) be groups. A homomorphism is a set 

map υ : G → G0 that preserves the group operation in the respective 

groups; that is, 

υ(a · b) = υ(a) ? υ(b)                          for all a, b   G. 

 

 Check Your Progress-II 

 1. Define Kernel  

Solution   : 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

2. Group Homomorphism. 
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……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………… 

5.2 ISOMORPHISM THEOREMS 

Isomorphism is a very general concept that appears in several areas of 

mathematics. The word derives from the Greek iso, meaning "equal," 

and morphosis, meaning "to form" or "to shape." 

Formally, an isomorphism is bijective morphism. Informally, an 

isomorphism is a map that preserves sets and relations among elements. "

 is isomorphic to " is written . Unfortunately, this symbol is also 

used to denote geometric congruence. 

An isomorphism from a set of elements onto itself is called 

an automorphism. 

In mathematics, specifically abstract algebra, the isomorphism 

theorems (also known as Noether's isomorphism theorems) 

are theorems that describe the relationship 

between quotients, homomorphisms, and subobjects. Versions of the 

theorems exist for groups, rings, vector spaces, modules, Lie algebras, 

and various other algebraic structures. In universal algebra, the 

isomorphism theorems can be generalized to the context of algebras and 

congruences.He isomorphism theorems were formulated in some 

generality for homomorphisms of modules by Emmy Noether in her 

paper AbstrakterAufbau der Idealtheorie in algebraischenZahl- und 

Funktionenkörpern which was published in 1927 

in MathematischeAnnalen. Less general versions of these theorems can 

be found in work of Richard Dedekind and previous papers by Noether. 

Three years later, B.L. van der Waerden published his 

influential Algebra, the first abstract algebra textbook that took 

the groups-rings-fields approach to the subject. Van der Waerden 
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credited lectures by Noether on group theory and Emil Artin on algebra, 

as well as a seminar conducted by Artin, Wilhelm Blaschke, Otto 

Schreier, and van der Waerden himself on ideals as the main references. 

The three isomorphism theorems, called homomorphism theorem, 

and two laws of isomorphism when applied to groups, appear explicitly. 

Statement of the theorems 

Theorem A 

Let G and H be groups, and let φ: G → H be a homomorphism. Then: 

1. The kernel of φ is a normal subgroup of G, 

2. The image of φ is a subgroup of H, and 

3. The image of φ is isomorphic to the quotient group G / ker(φ). 

In particular, if φ is surjective then H is isomorphic to G / ker(φ). 

 

Theorem 1 (First Isomorphism Theorem) 

Let υ : G → G0 be a homomorphism of groups. Then G/ ker(υ) ∼= υ(G) 

Proof. For simplicity let K = ker(υ). Define the homomorphism  

ψ : G/K → υ(G) by ψ(Kg) = υ(g).  

We claim that ψ is a group isomorphism. First, we need to check that ψ is 

well-defined and is a homomorphism. In order to establish that it is well 

defined, we need to check that if a is in the coset Kg then υ(a) = υ(g). 

But this is the case because, a = a 0 g, so 

υ(a) = υ(a 0 g) = υ(a 0 )υ(g) = υ(g). 

Now to see that ψ is a homomorphism, consider Kg, Kh  G/K. Then for 

any a, b   K we have 

ψ(Kg · Kh) = ψ(Kgh) = υ(gh) = υ(g)υ(h) = ψ(Kg)ψ(Kh), 

so ψ is a homomorphism. We now need to establish ψ is injective and 

surjective. For injectivity, we must prove that ker(ψ) = K. To see this, 

observe that 

ψ(Kg) = 1 ⇐⇒ υ(g) = 1 ⇐⇒ g  ker(υ) ⇐⇒ g   K ⇐⇒ Kg = K. 
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So ker(ψ) = K. Finally we need to see that ψ is surjective. Indeed if υ(g) 

  υ(G), then υ(g) has preimage Kg. 

Example. 1. Let υ :GLn(R) → R\{0}, υ(A) = det(A). Then ker(υ) = 

SLn(R), and υ(GLn(R)) = R\{0} so  

GLn(R)/SLn(R) ∼= R\{0}.  

2. υ : Sn → Z/2Z,   υ(σ) = 1 if σ is odd, υ(σ) = 0 if σ is even.  

   Then υ is a surjective homomorphism with ker(υ) = An. Thus 

Sn/An∼= Z/2Z. Thus |An| = n! 

 

Theorem  (Fourth/Lattice Isomorphism Theorem) Let N ✂ G. Then 

every subgroup of G/N is of the form H/N where N ≤ H ≤ G. Moreover, 

if H, K are subgroups of G containing N then  

1. H ≤ K if and only if H/N ≤ K/N  

2. H ✂ G if and only if H/N ✂ G/N 

3. if H ≤ K, then [K : H] = [K/N : H/N]  

4. (H ∩ K)/N ∼= H/N ∩ K/N 

Proof. Consider natural projection π : G → G/N, defined by π(g) = Ng. 

Let A ≤ G/N. Then the π −1 (A), the preimage of A under π, is a 

subgroup of G that contains π −1 (1) in G/N. But π −1 (1) = N, so N is a 

subgroup of H = π −1 (A), and π(H) = A so A = H/N. The four parts 

above all follow and we leave them as exercises. 

 

Theorem  (Third Isomorphism Theorem) Let K, N be normal 

subgroups of G, with N ✂ K. Then 

K/N ✂ G/N and (G/N)/(K/N) ∼= G/K. 

Proof. That K/N ✂ G/N follows from the previous theorem. Now define 

υ : G/N → G/K 

by υ(Ng) = Kg. By the First Isomorphism Theorem, (G/N)/ ker(υ) ∼= 

υ(G). It is clear υ is onto, so υ(G) = G/K. Now 
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ker(υ) = {Ng   G/N | Kg = K} = {Ng   G/N | g   K} = K/N. 

Thus by the First Isomorphism Theorem, (G/N)/(K/N) ∼= G/K. 

Theorem  (Second isomorphism theorem). Let R be a ring, let S ⊂ R 

be a subring, and let I be an ideal of R. Then:  

(1) S + I := {s + a : s   S, a   I} is a subring of R, 

 (2) S ∩ I is an ideal of S, and 

 (3) (S + I)/I is isomorphic to S/(S ∩ I). 

Proof. (1): S is a subring and I is an ideal so 1 + 0   S + I. Let s1 + a1 

and s2 + a2 be elements of S + I. Then  

(s1+a1)−(s2+a2) = (s1 − s2) | {z }  S + (a1 − a2) | {z }  I and 

(s1+a1)(s2+a2) = s1s2 |{z}  S + s1a2 + a1s2 + a1a2 | {z }  I . 

 Hence S + I is a subring of R. 

(2): The intersection S ∩I is nonempty since 0 is contained in I and S. 

Let a1, a2   S ∩I and let s   S. Then a1+a2   S∩I since S and I are both 

closed under addition. Furthermore sa1 and a1s are in S ∩ I since I is 

closed under multiplication from R ⊃ S and S is closed under 

multiplication. Therefore S ∩ I is an ideal of S 

(3): Consider the map υ: S → (S +I)/I which sends an element s to s+I. 

This is a ring homomorphism by definition of addition and multiplication 

in quotient rings. We claim that it is surjective with kernel S ∩ I, which 

would complete the proof by the first isomorphism theorem. Consider 

elements s   S and a   I. Then s + a + I = s + I since a   I, so s + a + I 

 im υ and hence υ is surjective. Let s   S be an element of ker υ. Then s 

+ I = I which holds if and only if s   I or equivalently if s   S ∩ I. Thus 

ker υ = S ∩ I and we have our desired result. 

 

Theorem  (Third isomorphism theorem). Let R be a ring and let J ⊂ I 

be ideals of R. Then I/J is an ideal of R/J and  

R/J I/J ∼= R/I. 
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Proof. Since I and J are ideals, they are nonempty and so I/J = {a + J : a 

  I} is also nonempty. Let a1, a2   I and let r   R. By definition of 

addition and multiplication of cosets, we have 

(a1 + J) + (a2 + J) = (a1 + a2) + J, 

(r + J)(a1 + J) = ra1 + J, 

and (a1 + J)(r + J) = a1r + J. 

Since I is an ideal, a1 + a2, ra1, and a1r are contained in I so I/J is an 

ideal of R/J. 

      Consider the map υ: R/J → R/I that sends r + J to r + I. We claim that 

this is a well-defined surjective homomorphism with kernel equal to I/J. 

(Then (R/J)/(I/J) is isomorphic to R/I by the first isomorphism theorem. 

 

Theorem on ring homomorphisms. The kernel I of f is an ideal of A, 

the image C of f is a subring of B. The quotient ring A/I is isomorphic to 

C 

Proof. Consider the map g: A/I → C, a+I 7→ f(a). It is well defined: a+I 

= a 0 +I implies a − a 0   I implies f(a) = f(a 0 ).  

       The element a + I belongs to the kernel of g iffg(a + I) = f(a) = 0, i.e. 

a   I, i.e. a + I = I is the zero element of A/I. Thus, ker(g) = 0.  

       The image of g is g(A/I) = {f(a) : a   A} = C.  

       Thus, g is an isomorphism. The inverse morphism to g is given by 

f(a) 7→ a + I. 

 

Correspondence theorem. Let I be an ideal of a ring A. Then there is a 

bijection between the set of all ideals J of A such that I ⊂ J and the set of 

all ideals of A/I : 

 {J : I an ideal of A, I ⊂ J} −→ {K : K an ideal of A/I} 

  J −→ J/I 

Proof. Denote by h the morphism h: A → A/I, a 7→ a + I, its image is 

A/I and its kernel is I 
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For an ideal J of A, I ⊂ J, denote by h|J : J → A/I, j 7→ j + I the 

restriction of h to J. Its kernel is I. Similarly to the proof of the previous 

theorem we deduce that h|J (J) is isomorphic to J/I which is an ideal of 

A/I. 

For an ideal K of A/I define K0 = h −1 (K) of A. Then K0 is an ideal of 

A, I ⊂ K. 

Now we have two maps, J 7→ J/I and K 7→ h −1 (K). They are inverse 

to each other, i.e. h −1 (J/I) = J and h −1 (K)/I = K. Thus, there is a one-

to-one correspondence between the ideals. 

The intersection of ideals of A is an ideal of A. Given a subset S of A, 

one can speak about the minimal ideal of A which contains S. This ideal 

is equal to  

{a1s1 + · · · + amsm :ai  A, si  S, m > 1}. 

Often it is called the ideal generated by S . 

 Let I, J be ideals of a ring A.  

Their sum I + J is the minimal ideal of A which contains both I and J, 

more explicitly  

I + J = {i + j :i  I, j   J}. 

Certainly, I + (J + K) = (I + J) + K. Similarly one defines the sum of 

several ideals Ik. 

Their product IJ is the minimal ideal which contains all ij :i  I, j   J, 

more explicitly. 

IJ = {i1j1 + · · · + injn : n > 1, im  I, jm  J}. 

The product is associative: 

(IJ)K = I(JK) 

and distributive: 

(I + J)K = IK + JK. 

Similarly one defines the product of several ideals I1 . . . In. Note that (I 

+J1)(I +J2) is the minimal ideal which contains products (i1 +j1)(i2 + j2) 

= (i1i2 + i2j1 + i1j2) + j1j2, so it is contained in I + J1J2: 
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(I + J1)(I + J2) ⊂ I + J1J2, 

but the inverse inclusion does not hold in general.  

For an element a of A the principal ideal generated by a is 

(a) = aA = {ab : b   A}. 

In particular, (0) = {0} is the smallest ideal of A and (1) = A is the 

largest ideal of A. Unless A = {0}, these are two distinct ideals of A. 

For several elements a1, . . . , an of A the ideal generated by the ai is 

denoted 

 (a1, . . . , an) = a1A + · · · + anA = {a1b1 + · · · + anbn : bi   A}. 

A ring A is a field if it contains a nonzero element and every nonzero 

element of A is invertible in A. 

Lemma. A nonzero ring is a field iff it has exactly two different ideals, 

(0) and (1). Proof. If I is a nonzero ideal of a field F , then I contains a 

nonzero element a. Therefore it contains aa�1 = 1 and therefore it 

contains 1b = b for every b in F ; so I = F . 

 

Conversely, if a nonzero ring has only two distinct ideals then it is a 

field: for every nonzero element aA must be equal to (1), hence a 

multiple of a is 1 and a is invertible. 

 

An ideal I of a ring A is called maximal if I 6= A and every ideal J such 

that I _ J _ A either  oincides with A or with I. By 1.1 this equivalent to: 

the quotient ring A=I has no proper ideals. By the previous lemma this is 

equivalent to A=I is a field. So we proved. 

 

Lemma. I is a maximal ideal of Aiff A=I is a field. A ring A is an 

integral domain if A 6= 0 and for every a; b 2 A ab = 0 implies a = 0 or b 

= 0. 

Example: every field is an integral domain: ab = 0 and a 6= 0 implies b = 

a�1ab = 0. Z is an ntegral domain. More generally, every nonzero 

subring of an integral domain is an integral domain. 

If A is an integral domain, one can form the field of fractions F of A as   

fa=b : a 2 A; b 2 A n f0gg: 
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By definition a=b = c=d iff ad = bc. 

This is an equivalence relation: if a=b = c=d and c=d = e=f then ad = bc 

and cf = ed so adf = bcf = bed, d(af* be) = 0. As d is not zero, af = be. 

Define two ring operations a=b + c=d = (ad + bc)=(bd) and (a=b)(c=d) = 

(ac)=(bd). 

The zero of F is 0=1 = 0=a for any nonzero a. Every nonzero element 

a=b of F isinvertible: if a=b 6= 0 then (a=b)1 = b=a. Thus F is a field. 

The ring homomorphism A !F , a 7! a=1 is injective: a=1 = 0=1 implies a 

= 0. Thus A can be identified with the subring A=1 of F . Then a=b can 

be identified with ab�1 giving the meaning of fraction to the symbol 

a=b. 

 

Thus, every integral domain is a nonzero subring of a field, and the latter 

is an integral domain. So the class of integral domains coincides with the 

class of nonzero subrings of fields. 

 

An ideal I of a ring A is called prime if I 6= A and for every a; b 2 A the 

inclusion ab 2 I implies that either a 2 I or b 2 I. Example: every field has 

a prime ideal: (0). 

 

Lemma. I is a prime ideal of Aiff A=I is an integral domain. 

Proof. Let I be a prime ideal of A. Let (a + I)(b + I) = 0 + I, then ab 2 I. 

So atleast one of a; b is in  which means that either a + I = 0 + I or b + I = 

0 + I. Thus,A=I is an integral domain. 

 

Conversely, let A=I be an integral domain. If ab 2 I then (a+I)(b+I) = I = 

0+I,hence either a + I = I and so a 2 I, or b + I = I and so b 2 I. Thus, I is 

a prime ideal of A. 

 

Example: for a prime number p the ideal pZ is a prime ideal of Z. The 

zero ideal (0) is a prime ideal of Z. 

Corollary. Every maximal ideal is prime. 

Proof. Every field is an integral domain. 
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Remark. In general, not every prime ideal is maximal. For instance, (0) is 

a prime ideal of Z which is not maximal. 

For rings Ai define their product A1 _ _ _ _ _ An as the set theoretical 

product endowed with the componentwise addition and multiplication. 

 

Modules over Rings 

Let A be a ring. An abelian group M is called an Amodule if there is a 

multiplication A _M ! M such that a(x + y) = ax + ay; (a + b)x = ax + bx; 

a(bx) = (ab)x; 1x = x. 

 

Examples. Every abelian group is a Zmodule,so the class of abelian 

groups coincide with the class of Zmodules. 

Every vector space over a field F is an F module. 

 

A map f:M ! N is called a homomorphism of Amodules 

if f(x + y) = f(x) + f(y) for every x; y 2 M and f(ax) = af(x) for every a 2 

A, x 2 M. A homomorphism 

f of Amodules is called an isomorphism of Amodules, or alternatively an 

Aisomorphism, if f is bijective. 

A subgroup N of an Amodule M is called an Asubmodule of M if an 2 N 

for every a 2 A; n 2 N. 

 

Example: Submodules of the Amodule A are ideals of A. For an 

AmoduleM and its  submodule N define the quotient module M=N as the 

quotient set of cosets m + N with the natural addition and multiplication 

by elements of A. 

Similarly to 1.1 one proves: If M;N are Amodules and f:M ! N is an 

Amodule homomorphism, then the kernel of f is a submodule of M and 

the image of f is a submodule of N, and M= ker(f) is Aisomorphic to 

im(f). 

Similarly to 1.1 submodules of the quotient module M=N are in 1–1 

correspondence with submodules of M containing N. 

In particular, if f:M ! N is an Amodule homomorphism, and K is a 

submodule of ker(f), then f  nduces an Amodule homomorphism g:M=K 

! N; m + K 7! f(m). 
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For AmodulesM;N the intersection M \ N is an Amodule.So if M;Nare 

contained in a larger module L, one can speak about the minimal 

Amodulewhichcontains a fixed set of elements related to M and N. 

Then the M + N = fm + n : m 2 M; n 2 Ng is the minimal Amodule 

which contains all all elements of M and N. 

Define the direct sum of modules as the set theoretical product with the 

natural addition and multiplication by elements of A. 

 

Lemma. Let N;K be Asubmodules of an Amodule M. A map f:N_K ! 

N+K, f((n; k)) = n+k is a surjective Amodulehomomorpism whose kernel 

is Aisomorphic to the submodule N \K. Therefore, if N \K = f0g, N _K is 

isomorphic to N +K. 

Proof. Clearly f is surjective. Its kernel is f(n; k) : n + k = 0g. Then n = 

�k 2 N \ K. A map f(n; k) : n + k = 0g ! N \ K; (n;n) 7! n is a bijection. 

 

The submodule M generated by elements xi is the minimal submodule 

which contains all of them, it consists of finite Alinear combinations of 

xi ; elements xi 2 M are called generators of M 

The minimal number of generators (if it exists) of M is called the rank of 

M. M is said to be of finite type if it has a finite number of generators. 

An Amodule M is called free if M has generators xi such that P aixi = 0 

implies ai = 0 for all i. The set of xi is called then a basis of M. 

 

Example Let A = F be a field. Let M;N be two F vector spaces of 

dimensions d1 and d2. In accordance with the previous theorem the 

vector space of linear maps M  N ! F is isomorphic to the vector space of 

bilinear maps M _F N !F . In accordance with Example in 3.2 the 

dimension of the space Bil(M;N; F) is d1d2; if m1; : : : ;md1 is a basis of 

M and n1; : : : ; nd2 is a basis of N, then every bilinear map f:M _ N ! F 

is determined by its values on f(mi; nj )g. Therefore, the dimension of the 

vector space HomF (M F N; F) is d1d2. It is known from linear algebra 

that the dimension of a vector space V equals to the dimension of HomF 

(V; F). So the dimension of M N is d1d2; the F vector space M F N has a 

basis mi  nj , 1 6 i 6 d1; 1 6 j 6 d2. Note that in the particular case of M = 

N the space N F N has dimension equal to the square of the dimension of 
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N. In physics, N over F = C represents the state vector of a particle, and 

N C N represents the state vectors of two independent particles of the 

same kind. 

5.3 LET US SUM UP 

In this unit we study group homomorphism and its examples. We study 

isomorphism and its definition and properties. We study Automorphism 

and its examples. We study Endomorphism and its definiton. We study 

third isomorphism theorem and its proof. We study Kernel and 

epimorphism. We study theorem on ring homomorphism.  

o A homomorphism is a map between two algebraic 

structures of the same type , that preserves 

the operations of the structures. This means 

a map  between two sets A, B equipped with the same 

structure such that, if  is an operation of the structure  then 

for every pair x, y of elements of A. says often that f preserves the 

operation or is compatible with the operation. 

o The endomorphisms of a vector space or of 

a module form a ring. In the case of a vector space or 

a free module of finite dimension, the choice of 

a basis induces a ring isomorphism between the ring of 

endomorphisms and the ring of square matrices of the 

same dimension. 

o A split epimorphism is a homomorphism that has a right 

inverse and thus it is itself a left inverse of that other 

homomorphism. 

o The kernel of a ring homomorphism  is the set of 

all elements of  which are mapped to zero. It is the 

kernel of  as a homomorphism of additive groups. It is 

an ideal of . 

o Isomorphism Theorem: 

Let υ : G → G0 be a homomorphism of groups. Then G/ 

ker(υ) ∼= υ(G) 
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o Theorem on ring homomorphisms. The kernel I of f is an 

ideal of A, the image C of f is a subring of B. The quotient 

ring A/I is isomorphic to C 

5.4 KEYWORD 

Independent :Free from outside control; not subject to another's 

authority. 

Isomorphism :An isomorphism is a homomorphism or morphism 

(i.e. a mathematical .... Then a general definition of isomorphism 

Lattice :A structure consisting of strips of wood or metal crossed and 

fastened together with square or diamond-shaped spaces left between, 

used as a screen or fence or as a support for climbing plants 

5.5 QUESTIONS FOR REVIEW  

1 If υ : GL2(R) → R\{0} is given by υ(A) = det(A) then ker(υ(A)) = 

SL2(R) and im(υ) = R\{0} 

2 Let υ : G → G0 be a homomorphism.  

Then  

1. ker(υ) is a subgroup of G, and υ is injective if and only if ker(υ) = eG.  

2. im(υ) is a subgroup of G0 , and υ is surjective if and only if im(υ) = 

G0 (or equivalently, υ(G) = G0 ) 

3. Suppose σ *  Sn is written as a product of transposition in two 

different ways, say σ = β1β2 · · · βr and σ = γ1γ2 · · · γs. Then r ≡ s mod 

2. 

4 The set of even permtuations in Sn is a subgroup of Sn. This group is 

called the alternating group of order n, and is denoted by An. Moreover, 

|An| = n! 2 

5.6 ANSWER FOR CHECK IN PROGRESS 

Check in Progress-I 
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Answer Q. 1 Check in Section 1.4 

 Q. 2 Check in Section 1.2  

Check in Progress-II 

Answer Q. 1 Check in Section 1.5 

   Q. 2 Check in Section 2.1 
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6.0 OBJECTIVE 

After reading this unit we learn to know about four lemma. Learn abhout 

short exact sequence,long exact sequence, Ring lemma and diagram 

chasing. We also learn about commutative diagram. 

6.1 INTRODUCTION: COMMUTATIVE 

DIAGRAM 

Let RR be an integral domain and α:R→R′α:R→R′ an injective ring 

homomorphism. Let KK and K′K′ be the fields of fractions 

of RR and R′R′ respectively. I know that there is a commutative diagram 

of rings 

Rα�↓�R′−→−−−ι−→−−−ι′Kβ�↓�K′R→ιKα↓β↓R′→ι′K′ 

where ιι and ι′ι′ are the canonical inclusion maps. Here ββ can be defined 

by β(r/s)=α(r)/α(s)β(r/s)=α(r)/α(s) for r Rr R and s R−0 

My question: is there a similar commutative diagram if we replace 

respectively K and K′ by arbitrary extension fields F and F′? 

n mathematics, and especially in category theory, a commutative 

diagram is a diagram such that all directed paths in the diagram with the 

same start and endpoints lead to the same result. Commutative diagrams 

play the role in category theory that equations play in algebra. 

6.1.1 Arrow Symbols 

In algebra texts, the type of morphism can be denoted with different 

arrow usages: 

 monomorphisms with a  

 epimorphisms with a  

 isomorphisms with a . 

 the dashed arrow typically represents the claim that the indicated 

morphism exists whenever the rest of the diagram holds; the arrow 

may optionally be labeled . 

If the dashed arrow is labeled  or , the morphism is furthermore unique. 
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These conventions are common enough that texts often do not explain 

the meanings of the different types of arrow. 

6.1.2 Diagram Chasing 

Diagram chasing (also called diagrammatic search) is a method 

of mathematical proof used especially in homological algebra. Given a 

commutative diagram, a proof by diagram chasing involves the formal 

use of the properties of the diagram, such as injective or surjective maps, 

or exact sequences. A syllogism is constructed, for which the graphical 

display of the diagram is just a visual aid. It follows that one ends up 

"chasing" elements around the diagram, until the desired element or 

result is constructed or verified. 

Examples of proofs by diagram chasing include those typically given for 

the five lemma, the snake lemma, the zig-zag lemma, and the nine 

lemma. 

6.1.3 Diagrams As Functors 

A commutative diagram in a category C can be interpreted as 

a functor from an index category J to C; one calls the functor a diagram. 

More formally, a commutative diagram is a visualization of a diagram 

indexed by a poset category: 

 one draws a node for every object in the index category, 

 an arrow for a generating set of morphisms, 

omitting identity maps and morphisms that can be expressed as 

compositions, 

 and the commutativity of the diagram (the equality of different 

compositions of maps between two objects) corresponds to the 

uniqueness of a map between two objects in a poset category. 

Conversely, given a commutative diagram, it defines a poset category: 

 the objects are the nodes, 

 there is a morphism between any two objects if and only if there is a 

(directed) path between the nodes, 
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 with the relation that this morphism is unique (any composition of 

maps is defined by its domain and target: this is the commutativity 

axiom). 

However, not every diagram commutes (the notion of diagram strictly 

generalizes commutative diagram): most simply, the diagram of a single 

object with an endomorphism (), or with two parallel arrows as used in 

the definition of equalizer need not commute. Further, diagrams may be 

messy or impossible to draw when the number of objects or morphisms 

is large (or even infinite). 

Example 

In the bottom-left diagram, which expresses the first isomorphism 

theorem, commutativity means that  while in the bottom-right diagram, 

commutativity of the square means : 

 

 

For the diagram below to commute, we must have the three equalities:. 

Since the first equality follows from the last two, for the diagram to 

commute it suffices to show (2) and (3). However, since equality (3) 

does not generally follow from the other two equalities, for this diagram 

to commute it is generally not enough to only have equalities (1) and (2). 

6.2 FOUR LEMMA 
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A diagram lemma which states that, given the above commutative 

diagram with exact rows, the  

following holds: 

1. If  is surjective, and  and  are injective, then  is injective; 

2. If  is injective, and  and  are surjective, then  is surjective. 

This lemma is closely related to the five lemma, which is based on a 

similar diagram obtained by adding a single column. 

Diagram chasing is a method of mathematical proof used especially 

in homological algebra. Homological algebra studies, in particular, the 

homology of chain complexes in abelian categories – therefore the name. 

From a modern perspective, homological algebra is the study of 

algebraic objects, (such as groups, rings or Lie algebras, or sheaves of 

such objects), by ‗resolving them‘, replacing them by more stable objects 

whose homotopy category is the derived category of an abelian category. 

Given a commutative diagram, a proof by diagram chasing involves the 

formal use of the properties of the diagram, such as injective or surjective 

maps, or exact sequences. A syllogism is constructed, for which the 

graphical display of the diagram is just a visual aid. It follows that one 

ends up "chasing" elements around the diagram, until the desired element 

or result is constructed or verified. Examples of proofs by diagram 

chasing include those typically given for the Snake Lemma, Four 

Lemma, Five Lemma, Nine Lemma, and Zig-Zag Lemma. 

Definition 1 An exact sequence is a sequence, either finite or infinite, of 

objects and morphisms between them such that the image of one 

morphism equals the kernel of the next. 

 

Definition 2 A short exact sequence is a finite sequence of objects and 

morphisms between them such that the image of one morphism equals 

the kernel of the next. 
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Definition 3 A long exact sequence is an infinite sequence of objects 

and morphisms between them such that the image of one morphism 

equals the kernel of the next. 

 

Formally, an exact sequence is a sequence of maps 

 

between a sequence of spaces  which satisfies 

 

where  denotes the image and  the group kernel. That 

is,  iff  for some . It follows 

that  The notion of exact sequence makes sense when the 

spaces are groups, modules, chain complexes, or sheaves. The notation 

for the maps may be suppressed and the sequence written on a single line 

as 

 

1. A short exact sequence: 

 

beginning and ending with zero, meaning the zero module . 

2. A long exact sequence: 

 

Special information is conveyed when one of the spaces is the zero 

module. For instance, the sequence 

 

is exact iff the map is injective. Similarly, 

 

is exact iff the map is surjective. 
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In homological algebra, given a short exact 

sequence  of -modules, there is a 

canonical long exact sequence 

 

where the  are certain "connecting homomorphisms" (or "snake 

maps"). This can be deduced from the Snake Lemma. For the proof the 

latter, one can engage in "diagram chasing". One can see, in the 

movie It’s My Turn (1980) a proof given for the Snake Lemma using 

diagram chasing. To define : given , lift " to , 

push it into  by , then check that the image has a preimage in . 

Then verify that the result is well-defined, et cetera. 

Lemma 1 (Snake Lemma) Given the commuting diagram 

 

in which the rows are exact, there is a canonical 

map , induced by  such 

that the sequence 

is exact. 

Proof: Suppose we are given a commutative diagram 

 

with exact rows. We wish to prove that the sequence 

is exact. 

First we claim that if any square 
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is commutative, then there are well-defined 

morphisms  and . For example, 

if , then the square 

 

must commute, and so the image of  in the top row must be in . 

The proof of the claim for cokernels is similar. Thus we have two 

sequences, 

 

each of which inherits being a complex from the original diagram. 

Suppose  is sent to . By exactness,  has a 

preimage . Because the diagram 

 

is commutative and the bottom morphism is injective,  and 

so . So the sequence 

 

is exact. The proof of the claim for the cokernel sequence is similar. 
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So now all we need to do is find a connecting 

morphism  such that the resulting sequence is exact 

at both of those points. 

Suppose . Then  has at least one preimage in . So 

let  and  be preimages of . Thus  and so by exactness 

has a preimage . By commutativity of the diagram,  has a 

preimage , which is unique by injectivity of the morphism . 

But we know that the square 

 

is commutative. We wish to 

define  by . Observe that 

 

and so the choice of preimage of  does not affect which cokernel 

element we ultimately select. So now we have our connecting morphism. 

By applying this definition we see that 

 

is a complex. 

Suppose  is sent to  by the connecting morphism. Thus we 

have a diagram 

 

which is commutative. Let  be the image of  under the 

morphism . Exactness of the diagram implies that  is a 
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preimage of . But . So the kernel-cokernel sequence is 

exact at . The proof that it is exact at  is similar. 

Check in Progress-I 

Q. 1 Define four lemma. 

Solution 

……………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

Q. 2 Define Diagram Chasing. 

Solution 

……………………………………………………………………… 

…………………………………………………………………………… 

……………………………………………………………………………

…………………………………………………………………………… 

 

6.3 THE RING LEMMA 

For each n > 3, let cn denote the infimum of the radii among n discs 

surrounding the unit disc. Then cn > 0. The sharp ring lemma states that 

cn = (F 2 n−1 + F 2 n−2 − 1), −1 where Fk is the k th Fibonacci number, 

and that this lower limit is attained in essentially unique configurations, 

see section 3 for the precise statement. We will use the Descartes circle 

theorem in the following special case, where the balls are required to 

have pairwise disjoint interiors. Just as halfplanes are viewed as discs of 

infinite radius, half-spaces are considered to be balls of infinite radius in 

R 3 ∪ {∞}, having disjoint interiors if they only intersect at infinity, in 

which case they are also tangent. 
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The Descartes circle theorem. Suppose N + 2 pairwise tangent balls in R 

N, N > 2, have pairwise disjoint interiors and inverse radii b1, . . . , 

bN+2. Then N P i b 2 i = (P i bi). 

Apollonian configurations The sharp ring lemma, which we will give a 

proof of below, gives that the sharp value of the ring lemma constant is 

attained in essentially unique configurations. Those configurations, 

which we will call Apollonian configurations, are defined as follows.  

        We recursively construct a configuration of discs A1, A2, . . . such 

that for each n > 3, the discs A1, . . . , An surround the unit disc D0 

(figure 2). First, we let A1, A2, A3 be discs with pairwise disjoint 

interiors that are externally tangent to the unit disc and where A1, A2 

have infinite radii, hence A3 has unit radius. Given discs A1, . . . , An, n 

> 3, we let An+1 be externally tangent to D0, An−1 and An.  

 

Definition. A configuration of n > 3 discs surrounding the unit disc is 

said to be an Apollonian configuration if it is equal to A1, . . . , An – as 

defined above – up to reflection and rotation. We see that the Apollonian 

configurations of three discs are unique up to rotation, and that 

Apollonian configurations of order four and higher are uniquely 

determined by the position of the third and fourth largest discs, 

corresponding to A3 and A4, respectively. 

6.3.1 Method of Proof 

We will prove the sharp ring lemma using a compactness argument in 

strip configurations, defined below. A more ‗dynamic‘ approach, which 

we will not use, is as follows. Noting that given k   {3, . . . , n}, the 

radius of Ak in an Apollonian configuration of n discs cannot be 

increased if A1, . . . , Ak−1 are fixed, it would be natural to try to 

successively modify the radii in an arbitrary configuration in order to 

reduce it to a configuration. 

An Apollonian configuration of six discs A1, . . . , A6 surrounding the 

unit disc D0. The radius of A6 is the smallest possible for six discs 

surrounding the unit disc.having this property. That is, given discs D1, . . 

. , Dn surrounding D0 we want to find a permutation (i1, . . . , in) of (1, . . 
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. , n) such that in the k th step the radius of Dik is increased – forcing 

Dik+1 , . . . , Din to change in order to maintain the surround property – 

until Dik touches the already increased Di1 , . . . , Dik−1 . For this 

smaller set of configurations, the sharp ring lemma can be verified using 

a monotonicity property of the Descartes circle theorem. 

       The difficulty with this approach is determining in what order to 

modify the discs, while preventing the smallest radius from increasing 

after all the adjustments. Given the properties of the Apollonian 

configurations, a natural candidate is to index by size, so that rik > rik+1 

. However, one must be more careful as the following simple 

counterexample shows (figure 3). Let D1, . . . , D6 be discs surrounding 

the unit disc D0, numbered clockwise by their tangency with D0, having 

radii r1 = r2 = +∞, r3 = 1, r5 = 1 5 and where D3 and D5 share an extra 

tangency; we see that this gives min(r4, r6) < 1 12 . The largest disc that 

can be increased without decreasing the radius of a larger disc is D5, and 

increasing the radius of this disc as much as D1, D2 and D3 allow, we 

see that the new radii satisfy min(r4, r6) = 1 12 

This method of proof was pursued in more detail by Hansen [12] and 

Stephenson [21]. Here we will reduce the problem to a simpler class of. 

2 The radii of the discs D1, D2, D3 in (a) cannot be increased without 

decreasing a larger disc. Increasing the largest remaining disc D5 

until it is stopped by D1, D2, D3 gives the configuration in (b), where 

min(r1, . . . , r6) has increased. 

Definition. Sequentially tangent discs D1, . . . , Dn, n > 2, are said to lie 

in a strip configuration if all discs lie between two parallel straight lines 

L1 and L2, have pairwise disjoint interiors and are tangent to L1, and 

moreover D1, Dn are tangent to L2. A tangency between Di and Di+1,i = 

1, . . . , n−1, is said to be ordinary, and other tangencies, except those 

with L1, are said to be extra tangencies. 

Lemma. Suppose DI and DII are non-outermost discs that share an 

ordinary tangency in a strip configuration. Construct a new strip 

configuration by adding a disc DIII that shares an ordinary tangency with 

DI and DII. Let h be the distance from the common line in the strip 
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configuration to the tangency between DI and DII. Suppose that h or one 

the of radii rI, rII, rIII is minimal among the strip configurations obtained 

by varying DI, DII and DIII, while maintaining the extra tangency 

between DI and DII. Then DI or DII has an additional extra tangency. 

Proof. Let DA and DB be discs such that DA, DI, DIII, DII, DB are 

sequentially tangent discs with ordinary tangencies, and let 2L be the 

centerto-center distance between DA and DB, as measured parallel to the 

common line in the strip configuration. 

6.4 THE RING LEMMA IN THREE 

DIMENSIONS 

Introduction A generalization of the ring lemma to three dimensions 

should determine the infimum of the radii for a set of n balls with 

pairwise disjoint interiors surrounding the unit ball. It is not clear, 

however, in what sense a finite set of balls should ‗surround‘ the unit 

ball. For instance, given any finite number of balls tangent to the unit 

ball, one can always find a smooth curve starting on the unit sphere that 

escapes to infinity without passing through any of the balls. 

Surrounding and hiding packings 

All balls are closed, and we remind that we view half-spaces as balls of 

infinite radius in R 3 ∪ {∞}, having disjoint interiors if they only 

intersect at infinity, in which case they are also tangent. 

 For each set of balls B1, . . . , Bn we define a combinatorial complex 

K(B1, . . . , Bn) of vertices, edges and faces as follows: start with n 

vertices v1, . . . , vn, add edges between vi, vj, i  = j if Bi, Bj are tangent, 

i, j = 1, . . . , n, and faces given by every set of three edges corresponding 

to three pairwise tangent balls.  

Definition. Suppose B1, . . . , Bn, n > 4, are balls with pairwise disjoint 

interiors that are externally tangent to the unit ball B0. We say that the 

balls B1, . . . , Bn surround B0 if K(B1, . . . , Bn), as defined above, has a 

subcomplex, containing all the vertices, that triangulates the unit sphere, 

and if the triangulation can be embedded without overlap in the unit 

sphere in such a way that:  
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I    vi  is the point of tangency between B0 and Bi 

,ii  each edge is a shortest path on the unit sphere between its endpoints, 

and  

(iii) the faces are spherical triangles Tijk satisfying area(Tijk) 6 2π. If, 

additionally, every straight half-line starting at the origin intersects B1 ∪ 

· · · ∪ Bn, we say that B1, . . . , Bn hide B0. 

Condition (iii) gives the convexity property that between any two points 

in Tijk there is a shortest path on the unit sphere that is contained in Tijk, 

and consequently that any shortest path strictly shorter than π between 

points in Tijk is contained in Tijk. 

Remark. In two dimensions, unless two of the discs are half-planes, no 

curve starting on the unit disc can escape to infinity without passing 

through one of the surrounding discs. Hence, a hide property is less 

interesting in two dimensions. 

Remark. Portions of lattice structures such as hexagonal close packing or 

face-centered cubic – lattices which are of great practical importance – 

do not satisfy this definition. In fact, both packings can be realized as 

stacked layers of identical balls forming a hexagonal pattern, making 

each ball tangent to twelve others. If we select a ball, corresponding to 

the unit ball and consider the balls tangent to it, six of the balls form a 

closed chain around the original ball and the other six are divided 

between two layers, each containing three balls. The above definition 

only considers groups of three pairwise tangent balls, and we see that we 

get six ‗holes‘ formed between groups of four cyclically tangent balls. 

We may, however, add a ball in each ‗hole‘ in order to satisfy the 

definition. 

6.5 LEMMA FOR THE LOWER BOUND 

Take x   = 0. Denote by Φ the reflection in S(x, 1   ) – that is, the sphere 

centered at x^ with unit radius – which is a Möbius transformation 

satisfying Φ−1 = Φ and Φ S (|x | ± r) x  |x | , r = P |x | ± 1 2r  , where 
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P(α) =  x   R 3 ; x · x  |x | = α ∪ {∞} is a plane. Furthermore, we let r, r′ 

, ri and so on denote the radii of correspondingly marked balls B, B′ , 

Lemma. Suppose B1, . . . , Bn surround B0. Let B∗ be one of the 

surrounding balls and x  its intersection with B0. Denote by Φ the 

reflection in S(x, 1 ^ ). If the spherical triangle Tpqr contains the 

antipode of x , then 1 r ′ i + 1 r ′ j > 4 for all i, j   {p, q, r} with r ′ i , r′ j 

< +∞ and i  = j, where r ′ i is the radius of Φ(B. 

Proof. Transforming the configuration using Φ gives a kind of 

threedimensional ‗strip configuration‘ where the balls tangent to B∗ for 

closed chain of balls tangent to the half-spaces B ′ ∗ = Φ(B∗) and B ′ 0 = 

Φ(B0). 

For purposes of orientation, we consider B ′ 0 to lie below B ′ ∗ – a point 

x lies below another point x ′ , and x ′ above x, if x is closer to the 

boundary of B ′ 0 than x ′ is – and in the original configuration we let x^ 

be the north pole of B0 

To simplify the notation, we renumber so that (p, q, r) = (1, 2, 3). If Bi, 

Bj, i  = j, are tangent at etij we let tij = etij |etij| , which is the point on B0 

closest to the tangency between Bi and Bj. 

Suppose first that B∗  = Bi, i = 1, 2, 3. Referring to the ‗strip 

configuration‘ – figure 7 (b) – consider the three planes P ′ 12, P′ 13, P′ 

23 that are parallel to the boundary of B ′ 0 and where P ′ ij passes 

through B ′ i ∩ B ′ j . Aiming to show that x  = Φ(∞) lies on or above at 

least one of the planes, we assume this is not the case. Then the planes P ′ 

ij are mapped by Φ to spheres that contain Bi ∩ Bj, are tangent to B∗ at 

x^ and enclose B∗\{x^}, and it follows that t12, t13 and t23 lie in the 

interior of the northern hemisphere. We obtain the required contradiction 

by showing that the spherical triangle T123 cannot enclose the south pole 

−x , contradicting the construction. 

        Since the points of tangencies between the balls B1, B2, B3 lie on 

the northern hemisphere of B0, we see that at most one of them can be 

tangent to the southern hemisphere of B0. If all balls B1, B2, B3 are 

tangent to the northern hemisphere, we obtain the contradiction 
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immediately, hence we may assume without loss of generality that B1 is 

tangent to the interior of the southern hemisphere of B0. Consider first 

the plane through the tangencies between B0, B1 and B2 (figure 8). The 

plane passes through the center of B0 and determines a great circle on 

B0. We see that the length α2 of the shortest path on the unit sphere 

between t01 and t12, satisfies α2 < π 2 , and the same holds for the 

correspondingly defined length α3. 

        The points t12 and t13 lie on the northern hemisphere, and we claim 

that since the lengths α2, α3 satisfy max(α2, α3) < π 2 , the spherical 

triangle T123 cannot enclose −x . First, note that it is sufficient to 

consider the spherical triangle contained in T123 that has vertices t12, 

t13, t01, where we may assume that t12 and t13 lie on the equator. 

Suppose now that the south pole is contained in this smaller triangle. 

Since the triangle does not contain a great circle, a shortest path on the 

unit sphere from t01 to the south pole – a path which lies within the 

triangle – may be extended within the triangle along its great circle until 

it intersects the side between t12 and t13 at a point x. The intersection is 

at a right angle, and, without loss of generality, we may assume that the 

shortest path between x and t13 is shorter than π 2 and also exclude the 

trivial case x = t13. Letting a, b, c be the lengths of the sides opposite to 

x, t13 and t01, respectively, the spherical Pythagorean theorem yields cos 

a = cos b cos c. We have that a < π 2 , b 6 π, c 6 π 2 , hence cos a > 0 and 

cos c > 0, so that b < π 2 , which is impossible since the corresponding 

shortest path passes through both the equator and the south pole.  

          Now consider the case where B∗ = Bi for some i; without loss of 

generality we may assume that B∗ = B3. Using the previous construction 

of P ′ 12, we again assume that x  lies strictly below P ′ 12, and, as 

above, it follows that t12 lies on the northern hemisphere of B0. 

Furthermore, we see that the projection x 7→ x |x| on B0 of the entire 

ball B3 = B∗ lies on the northern hemisphere of B0, hence so does t13, 

t23. Again this means that the spherical triangle T123 determined by B1, 

B2, B3 cannot enclose −x . 

Hence x^ – which is a distance 1 2 from B ′ 0 – must lie on or above at 

least one plane P ′ ij. Since the distance between P ′ ij and B ′ 0 is 2 1 r ′ i 
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+ 1 r ′ j , −1 just like in the two-dimensional case, we get the desired 

inequality. 

6.6 FIVE LEMMA 

In mathematics, especially homological algebra and other applications 

of abelian category theory, the five lemma is an important and widely 

used lemma about commutative diagrams. The five lemma is not only 

valid for abelian categories but also works in the category of groups, for 

example. 

The five lemma can be thought of as a combination of two other 

theorems, the four lemmas, which are dual to each othe 

6.7 STATEMENTS 

Consider the following commutative diagram in any abelian 

category (such as the category of abelian groups or the category of vector 

spaces over a given field) or in the category of groups. 

 

The five lemma states that, if the rows 

are exact, m and p are isomorphisms, l is an epimorphism, and q is 

a monomorphism, then n is also an isomorphism. 

The two four-lemmas state: 

(1) If the rows in the commutative diagram 

 

are exact and m and p are epimorphisms and q is a monomorphism, 

then n is an epimorphism. 
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(2) If the rows in the commutative diagram 

 

are exact and m and p are monomorphisms and l is an epimorphism, 

then n is a monomorphism. 

Proof 

The method of proof we shall use is commonly referred to as diagram 

chasing.
[1]

 We shall prove the five lemma by individually proving each 

of the two four lemmas. 

To perform diagram chasing, we assume that we are in a category 

of modules over some ring, so that we may speak of elements of the 

objects in the diagram and think of the morphisms of the diagram 

as functions (in fact, homomorphisms) acting on those elements. Then a 

morphism is a monomorphism if and only if it is injective, and it is an 

epimorphism if and only if it is surjective. Similarly, to deal with 

exactness, we can think of kernels and images in a function-theoretic 

sense. The proof will still apply to any (small) abelian category because 

of Mitchell's embedding theorem, which states that any small abelian 

category can be represented as a category of modules over some ring. For 

the category of groups, just turn all additive notation below into 

multiplicative notation, and note that commutativity of abelian group is 

never used. 

So, to prove (1), assume that m and p are surjective and q is injective. 
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A proof of (1) in the case where . 

 

A proof of (1) in the case where . 

 

 Let c′ be an element of C′. 

 Since p is surjective, there exists an element d in D with p(d) 

= t(c′). 

 By commutativity of the diagram, u(p(d)) = q(j(d)). 

 Since im t = ker u by exactness, 0 = u(t(c′)) = u(p(d)) = q(j(d)). 

 Since q is injective, j(d) = 0, so d is in ker j = im h. 



Notes 

157 

 Therefore, there exists c in C with h(c) = d. 

 Then t(n(c)) = p(h(c)) = t(c′). Since t is a homomorphism, it 

follows that t(c′ − n(c)) = 0. 

 By exactness, c′ − n(c) is in the image of s, so there 

exists b′ in B′ with s(b′) = c′ − n(c). 

 Since m is surjective, we can find b in B such that b′ = m(b). 

 By commutativity, n(g(b)) = s(m(b)) = c′ − n(c). 

 Since n is a homomorphism, n(g(b) + c) = n(g(b)) + n(c) 

= c′ − n(c) + n(c) = c′. 

 Therefore, n is surjective. 

Then, to prove (2), assume that m and p are injective and l is 

surjective. 

 

A proof of (2). 

 

 Let c in C be such that n(c) = 0. 

 t(n(c)) is then 0. 

 By commutativity, p(h(c)) = 0. 
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 Since p is injective, h(c) = 0. 

 By exactness, there is an element b of B such that g(b) = c. 

 By commutativity, s(m(b)) = n(g(b)) = n(c) = 0. 

 By exactness, there is then an element a′ of A′ such that r(a′) 

= m(b). 

 Since l is surjective, there is a in A such that l(a) = a′. 

 By commutativity, m(f(a)) = r(l(a)) = m(b). 

 Since m is injective, f(a) = b. 

 So c = g(f(a)). 

 Since the composition of g and f is trivial, c = 0. 

 Therefore, n is injective. 

Combining the two four lemmas now proves the entire five 

lemma. 

Applications 

The five lemma is often applied to long exact sequences: when 

computing homology or cohomology of a given object, one typically employs a 

simpler subobject whose homology/cohomology is known, and arrives at a 

long An exact sequence is a concept in mathematics, especially in group 

theory, ring and module theory, homological algebra, as well as 

in differential geometry. An exact sequence is a sequence, either finite or 

infinite, of objects and morphisms between them such that the image of 

one morphism equals the kernel of the next. 

exact sequence which involves the unknown homology groups of the 

original object. This alone is often not sufficient to determine the 

unknown homology groups, but if one can compare the original object 

and sub object to well-understood ones via morphisms, then a morphism 

between the respective long exact sequences is induced, and the five 

lemma can then be used to determine the unknown homology groups. 

 

Check in Progress-II 

Q. 1 Define five lemma. 

Solution 

………………………………………………………………………… 
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…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

Q, 2 Define Lemma for Lower bound. 

Solution 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

 

 

Definition 

In the context of group theory, a sequenceof groups and group 

homomorphisms is called exact if the image of each homomorphism is 

equal to the kernel of the next: 

The sequence of groups and homomorphisms may be either finite or 

infinite. 

A similar definition can be made for other algebraic structures. For 

example, one could have an exact sequence of vector spaces and linear 

maps, or of modules and module homomorphisms. More generally, the 

notion of an exact sequence makes sense in 

any category with kernels and cokernels. 

 

6.7.1 Simple Cases 

To understand the definition, it is helpful to consider relatively simple 

cases where the sequence is finite and begins or ends with the trivial 

group. Traditionally, this, along with the single identity element, is 

denoted 0 (additive notation, usually when the groups are abelian), or 

denoted 1 (multiplicative notation). 



Notes 

160 

 The sequence 0 → A → B is exact at A if and only if the map 

from A to B has kernel {0}; i.e., if and only if that map is 

a monomorphism (injective, or one-to-one). 

 Dually, the sequence B → C → 0 is exact at C if and only if the 

image of the map from B to C is all of C; i.e., if and only if that 

map is an epimorphism (surjective, or onto). 

 Therefore, the sequence 0 → X → Y → 0 is exact if and only if 

the map from X to Y is both a monomorphism and 

epimorphism (that is, a bimorphism), and thus, in many cases, 

an isomorphism from X to Y. 

6.7.2 Short Exact Sequence 

Important are short exact sequences, which are exact sequences of the 

form 

As established above, for any such short exact sequence, f is 

a monomorphism and g is an epimorphism. Furthermore, the image of f 

is equal to the kernel of g. It is helpful to think of A as a subobject of B 

with f embedding A into B, and of C as the corresponding factor object 

(or quotient), B/A, with g inducing an isomorphismis called split if there 

exists a homomorphism h : C → B such that the composition g ∘ h is the 

identity map on C. It follows that if these are abelian groups, B is 

isomorphic to the direct sum of A and C (see Splitting lemma): 

 

6.7.3 Long Exact Sequence 

A long exact sequence is an exact sequence consisting of more than 

three nonzero terms, often an infinite exact sequence. 

A long exact sequenceis equivalent to a sequence of short exact 

sequences . 

6.7.4 Examples Integers Modulo Two 

Consider the following sequence of abelian groups: 
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The first homomorphism maps each element i in the set of integers Z to 

the element 2i in Z. The second homomorphism maps each element i 

in Z to an element j in the quotient group, i.e., j = i mod 2. Here the 

hook  indicates that the map 2× from Z to Z is a monomorphism, and the 

two-headed arrow indicates an epimorphism (the map mod 2). This is an 

exact sequence because the image 2Z of the monomorphism is the kernel 

of the epimorphism. Essentially "the same" sequence can also be written 

as 

In this case the monomorphism is 2n ↦ 2n and although it looks like an 

identity function, it is not onto (i.e. not an epimorphism) because the odd 

numbers don't belong to 2Z. The image of 2Z through this 

monomorphism is however exactly the same subset of Z as the image 

of Z through n ↦ 2n used in the previous sequence. This latter sequence 

does differ in the concrete nature of its first object from the previous one 

as 2Z is not the same set as Z even though the two are isomorphic as 

groups. 

The first sequence may also be written without using special symbols for 

monomorphism and epimorphism: 

 

Here 0 denotes the trivial group, the map from Z to Z is multiplication 

by 2, and the map from Z to the factor group Z/2Z is given by reducing 

integers modulo 2. This is indeed an exact sequence: 

The image of the map 0 → Z is {0}, and the kernel of multiplication by 2 

is also {0}, so the sequence is exact at the first Z. 

The image of multiplication by 2 is 2Z, and the kernel of reducing 

modulo 2 is also 2Z, so the sequence is exact at the second Z. 

The image of reducing modulo 2 is Z/2Z, and the kernel of the zero map 

is also Z/2Z, so the sequence is exact at the position Z/2Z. 

The first and third sequences are somewhat of a special case owing to the 

infinite nature of Z. It is not possible for a finite group to be mapped by 

inclusion (i.e. by a monomorphism) as a proper subgroup of itself. 
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Instead the sequence that emerges from the first isomorphism 

theorem iswhere is the dihedral group of order 2n, which is a non-abelian 

group. 

6.7.5 Intersection And Sum Of Modules 

Let I and J be two ideals of a ring R. Thenis an exact sequence of R-

modules, where the module homomorphism maps each element x of  to 

the element  of the direct sum , and the homomorphsim maps each 

element These homomorphisms are restrictions of similarly defined 

homomorphisms that form the short exact sequencePassing to quotient 

modules yield another exact sequence. 

 

6.7.6 Grad, Curl And Divergent In Differential 

Geometry 

Another example, from differential geometry, especially relevant for 

work on the Maxwell equations, isare the domains for 

the curl and div operators respectively.This is based on the fact that on 

properly defined Hilbert spaces, one hasand, in addition, curl-free vector 

fields can always be written as a gradient of a scalar function (as soon as 

the space is assumed to be simply connected, see Note 1 below), and that 

a divergenceless field can be written as a curl of another field.[1] 

This example makes use of the fact that 3-dimensional space is 

topologically trivial. 

 

Properties 

The splitting lemma states that if the short exact sequence 

admits a morphism t : B → A such that t ∘ f is the identity on A or a 

morphism u: C → B such that g ∘ u is the identity on C, then B is a direct 

sum of A and C (for non-commutative groups, this is a semidirect 

product). One says that such a short exact sequence splits. 
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The snake lemma shows how a commutative diagram with two exact 

rows gives rise to a longer exact sequence. The nine lemma is a special 

case. 

The five lemma gives conditions under which the middle map in a 

commutative diagram with exact rows of length 5 is an isomorphism; 

the short five lemma is a special case thereof applying to short exact 

sequences. 

The importance of short exact sequences is underlined by the fact that 

every exact sequence results from "weaving together" several 

overlapping short exact sequences. Consider for instance the exact 

sequencewhich implies that there exist objects C in the category such 

that. Suppose in addition that the cokernel of each morphism exists, and 

is isomorphic to the image of the next morphism in the sequence: 

(This is true for a number of interesting categories, including any abelian 

category such as the abelian groups; but it is not true for all categories 

that allow exact sequences, and in particular is not true for the category 

of groups, in which coker(f) : G → H is not H/im(f) but the quotient of H 

by the conjugate closure of im(f).) Then we obtain a commutative 

diagram in which all the diagonals are short exact sequences: 

6.8 LET US SUM UP 

We study in this unit four leema and five lemma with its example. We 

study Chasing Diagram and its properties. We study intersection and sum 

of module.We study ring lemma and ring lemma in three dimonsions. 

We study simple case. We study ring lemma in three dimension. We 

study short exact sequence and long exact sequence. We study lemma for 

the lower bound.  

1. A commutative diagram in a category C can be interpreted as 

a functor from an index category J to C; one calls the functor 

a diagram. 

2. An exact sequence is a sequence, either finite or infinite, of 

objects and morphisms between them such that the image of one 

morphism equals the kernel of the next. 
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3. A short exact sequence is a finite sequence of objects and 

morphisms between them such that the image of one morphism 

equals the kernel of the next. 

4. A long exact sequence is an infinite sequence of objects and 

morphisms between them such that the image of one morphism 

equals the kernel of the next. 

5. The splitting lemma states that if the short exact sequence admits a 

morphism t : B → A such that t ∘ f is the identity on A or a 

morphism u: C → B such that g ∘ u is the identity on C, then B is 

a direct sum of A and C 

6.9 KEYWORD 

Chasing : Drive or cause to go in a specified direction 

Commutative :relating to or involving substitution or exchange 

Diagram: A diagram is a simple drawing which consists mainly of 

lines and is used 

Homological : Having the same or a similar relation; corresponding, 

as in relative position or structure 

6.10 QUESTIONS FOR REVIEW  

Q. 1 . For an R-module M, we have the following statements. (a) If 2  / 

S, then ΓSˆ(R(+)M) =  |M| 2 ΓS(R). (b) If 2   S, then ΓSˆ(R(+)M) = 

 |M| 2 ΓS(R)   ( |S|K|M|). 

Q. 2 The following statements hold. 

         (a) gr(ΓS(R)) ≤ gr(ΓS˜(R/I));  

        (b) diam(ΓS˜(R/I)) ≤ diam(ΓS(R));  

        (c) If ΓS˜(R/I) is a complete graph, then diam(ΓS(R)) ≤ 2; and,  

        (d) If ΓS˜(R/I) is not a complete graph, then diam(ΓS˜(R/I)) = 

diam(ΓS(R)). 

Q. 3  Let R be a commutative ring. Then the following statements hold.  
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         (a) If 2x /  S for some x   R, then x + I is a co-clique in ΓS(R). 

         (b) If 2x   S for some x   R, then x + I is a clique in ΓS(R). 

Q. 4 Let x and y be two elements of R. Then the following statements are 

equivalent: 

        (a) x is adjacent to y in ΓS(R);  

       (b) x + I is adjacent to y + I in ΓS˜(R/I); 

       (c) each element of x + I is adjacent to each element of y + I in 

ΓS(R); and,  

       (d) there exist x + i in x + I and y + i 0 in y + I which are adjacent in 

ΓS(R). 

Q. 5 By using the above notation, S˜ is a saturated multiplicatively closed 

subset of R/I. 

Q. 6 Suppose that S is an ideal of R with |S| = α. Set A := {x+S : x   R \ 

S and 2x   S} and B := {x + S : x   R \ S and 2x 6  S}. Then ΓS(R) is 

the disjoint union of |A| + 1 times Kα and |B|/2 times Kα,α. 

Q. 7 The graph ΓS(R) is complete if and only if S = R or char R = 2 and 

S = R \ {0} 

6.11 ANSWER FOR CHECK IN 

PROGRESS 

Check in Progress –I 

Answer Q. 1 Check in section 2 

 Q. 2 Check in Section 1.2 

Check in Progress –I 

Answer Q. 1 Check in section 6 

 Q. 2 Check in Section 5 
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7.0 OBJECTIVE 

After study this unit we familiar with vector space and abelian group. 

Learn about two abelian group. Learn construction of two vector spaces. 

We learn about direct product, vector product of vector space and learn 

binary relation. 

7.1 INTRODUCTION: DIRECT SUM OF 

MODULES 

In abstract algebra, the direct sum is a construction which combines 

several modules into a new, larger module. The direct sum of modules is 

the smallest module which contains the given modules as submodules 

with no "unnecessary" constraints, making it an example of a coproduct. 

Contrast with the direct product, which is the dual notion. 

The most familiar examples of this construction occur when 

considering vector spaces (modules over a field) and abelian 

groups (modules over the ring Z of integers). The construction may also 

be extended to cover Banach spaces and Hilbert spaces. 

7.1.1 Construction For Vector Spaces And Abelian 

Groups 

We give the construction first in these two cases, under the assumption 

that we have only two objects. Then we generalise to an arbitrary family 

of arbitrary modules. The key elements of the general construction are 

more clearly identified by considering these two cases in depth. 

7.1.2 Construction For Two Vector Spaces 

Suppose V and W are vector spaces over the field K. The cartesian 

product V × W can be given the structure of a vector space 

over K (Halmos 1974, §18) by defining the operations componentwise: 

 (v1, w1) + (v2, w2) = (v1 + v2, w1 + w2) 

 α (v, w) = (α v, α w) 

for v, v1, v2   V, w, w1, w2   W, and α   K. 
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The resulting vector space is called the direct sum of V and W and is 

usually denoted by a plus symbol inside a circle: 

It is customary to write the elements of an ordered sum not as 

ordered pairs (v, w), but as a sum v + w. 

The subspace V × {0} of V   W is isomorphic to V and is often 

identified with V; similarly for {0} × W and W. (See internal direct 

sum below.) With this identification, every element of V   W can be 

written in one and only one way as the sum of an element of V and an 

element of W. The dimension of V   W is equal to the sum of the 

dimensions of V and W. One elementary use is the reconstruction of a 

finite vector space from any subspace W and its orthogonal 

complement:This construction readily generalises to any finite number of 

vector spaces. 

 

7.1.3 Construction For Two Abelian Groups 

For abelian groups G and H which are written additively, 

the direct product of G and H is also called a direct. Thus the cartesian 

product G × H is equipped with the structure of an abelian group by 

defining the operations componentwise: 

 (g1, h1) + (g2, h2) = (g1 + g2, h1 + h2) 

for g1, g2 in G, and h1, h2 in H. 

Integral multiples are similarly defined componentwise by 

 n(g, h) = (ng, nh) 

for g in G, h in H, and n an integer. This parallels the extension of the 

scalar product of vector spaces to the direct sum above. 

The resulting abelian group is called the direct sum of G and H and is 

usually denoted by a plus symbol inside a circle: 

It is customary to write the elements of an ordered sum not as 

ordered pairs (g, h), but as a sum g + h. 
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The subgroup G × {0} of G   H is isomorphic to G and is often 

identified with G; similarly for {0} × H and H. (See internal direct 

sum below.) With this identification, it is true that every element 

of G   H can be written in one and only one way as the sum of an 

element of G and an element of H. The rank of G   H is equal to the 

sum of the ranks of G and H. 

This construction readily generalises to any finite number of abelian 

groups. 

7.1.4 Construction For An Arbitrary Family Of 

Modules 

One should notice a clear similarity between the definitions of the direct 

sum of two vector spaces and of two abelian groups. In fact, each is a 

special case of the construction of the direct sum of two modules. 

Additionally, by modifying the definition one can accommodate the 

direct sum of an infinite family of modules. The precise definition is as 

follows (Bourbaki 1989, §II.1.6). 

Let R be a ring, and {Mi : i   I} a family of left R-modules indexed by 

the set I. The direct sum of {Mi} is then defined to be the set of all 

sequences  where   for cofinitely many indices i. (The direct product is 

analogous but the indices do not need to cofinitely vanish.) 

It can also be defined as functions α from I to the disjoint union of the 

modules Mi such that α(i)   Mi for all i   I and α(i) = 0 for cofinitely 

many indices i. These functions can equivalently be regarded as finitely 

supported sections of the fiber bundle over the index set I, with the fiber 

over  being . 

This set inherits the module structure via component-wise addition and 

scalar multiplication. Explicitly, two such sequences (or functions) α and 

β can be added by writing  for all i (note that this is again zero for all but 

finitely many indices), and such a function can be multiplied with an 

element r from R by defining  for all i. In this way, the direct sum 

becomes a left R-module, and it is denoted 
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It is customary to write the sequence  as a sum . Sometimes a 

primed summation  is used to indicate that cofinitely many of the 

terms are zero. 

7.1.5 Properties 

 The direct sum is a submodule of the direct product of the 

modules Mi (Bourbaki 1989, §II.1.7). The direct product is the set of 

all functions α from I to the disjoint union of the 

modules Mi with α(i) Mi, but not necessarily vanishing for all but 

finitely many i. If the index set I is finite, then the direct sum and the 

direct product are equal. 

 Each of the modules Mi may be identified with the submodule of the 

direct sum consisting of those functions which vanish on all indices 

different from i. With these identifications, every element x of the 

direct sum can be written in one and only one way as a sum of 

finitely many elements from the modules Mi. 

 If the Mi are actually vector spaces, then the dimension of the direct 

sum is equal to the sum of the dimensions of the Mi. The same is true 

for the rank of abelian groups and the length of modules. 

 Every vector space over the field K is isomorphic to a direct sum of 

sufficiently many copies of K, so in a sense only these direct sums 

have to be considered. This is not true for modules over arbitrary 

rings. 

 The tensor product distributes over direct sums in the following 

sense: if N is some right R-module, then the direct sum of the tensor 

products of N with Mi (which are abelian groups) is naturally 

isomorphic to the tensor product of N with the direct sum of the Mi. 

 Direct sums are commutative and associative (up to isomorphism), 

meaning that it doesn't matter in which order one forms the direct 

sum. 

 The group of R-linear homomorphisms from the direct sum to some 

left R-module L is naturally isomorphic to the direct product of the 

sets of R-linear homomorphisms from Mi to L: 
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Indeed, there is clearly a homomorphism τ from the left hand side to the 

right hand side, where τ(θ)(i) is the R-linear homomorphism 

sending x Mi to θ(x) (using the natural inclusion of Mi into the direct 

sum). The inverse of the homomorphism τ is defined byMifor any α in 

the direct sum of the modules Mi. The key point is that the definition 

of τ
−1

 makes sense because α(i) is zero for all but finitely many i, and so 

the sum is finite. 

In particular, the dual vector space of a direct sum of vector spaces is 

isomorphic to the direct product of the duals of those spaces. 

7.2 INTERNAL DIRECT SUM 

Suppose M is some R-module, and Mi is a submodule of M for 

every i in I. If every x in M can be written in one and only one way as a 

sum of finitely many elements of the Mi, then we say that M is 

the internal direct sum of the submodules Mi (Halmos 1974, §18). In 

this case, M is naturally isomorphic to the (external) direct sum of 

the Mi as defined above (Adamson 1972, p.61). 

A submodule N of M is a direct summand of M if there exists some 

other submodule N′ of M such that M is the internal direct sum 

of N and N′. In this case, N and N′ are complementary submodules. 

7.2.1 Universal Property 
In the language of category theory, the direct sum is a coproduct and 

hence a colimit in the category of left R-modules, which means that it is 

characterized by the following universal property. For every i in I, 

consider the natural embeddingwhich sends the elements of Mi to those 

functions which are zero for all arguments but i. If fi : Mi → M are 

arbitrary R-linear maps for every i, then there exists precisely one R-

linear map:  

such that f o ji = fi for all i. 

7.2.2 Grothendieck Group 
The direct sum gives a collection of objects the structure of a 

commutative monoid, in that the addition of objects is defined, but not 

subtraction. In fact, subtraction can be defined, and every commutative 
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monoid can be extended to an abelian group. This extension is known as 

the Grothendieck group. The extension is done by defining equivalence 

classes of pairs of objects, which allows certain pairs to be treated as 

inverses. The construction, detailed in the article on the Grothendieck 

group, is "universal", in that it has the universal property of being unique, 

and homomorphic to any other embedding of an abelian monoid in an 

abelian group. 

7.3 DIRECT SUM OF MODULES WITH 

ADDITIONAL STRUCTURE 

If the modules we are considering carry some additional structure (e.g. 

a norm or an inner product), then the direct sum of the modules can often 

be made to carry this additional structure, as well. In this case, we obtain 

the coproduct in the appropriate category of all objects carrying the 

additional structure. Two prominent examples occur for Banach 

spaces and Hilbert spaces. 

In some classical texts, the notion of direct sum of algebras over a field is 

also introduced. This construction, however, does not provide a 

coproduct in the category of algebras, but a direct product (see note 

below and the remark on direct sums of rings). 

7.3.1 Direct sum of algebras 

A direct sum of algebras X and Y is the direct sum as vector 

spaces, with product 

Consider these classical examples: 

X is ring isomorphic to split-complex numbers, also used in interval 

analysis. 

Y  is the algebra of tessarines introduced by James Cockle in 1848. 

Z called the split-biquaternions, was introduced by William Kingdon 

Clifford in 1873. 

Joseph Wedderburn exploited the concept of a direct sum of algebras in 

his classification of hypercomplex numbers. See his Lectures on 

Matrices (1934), page 151. Wedderburn makes clear the distinction 

between a direct sum and a direct product of algebras: For the direct sum 
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the field of scalars acts jointly on both parts:  while for the direct product 

a scalar factor may be collected alternately with the parts, but not 

both:. Ian R. Porteous uses the three direct sums above, denoting them , 

as rings of scalars in his analysis of Clifford Algebras and the Classical 

Groups (1995). 

The construction described above, as well as Wedderburn's use of the 

terms direct sum and direct product follow a different convention from 

the one in category theory. In categorical terms, Wedderburn's direct 

sum is a categorical product, whilst Wedderburn's direct product is 

a coproduct (or categorical sum), which (for commutative algebras) 

actually corresponds to the tensor product of algebras. 

 

7.3.2  Composition Algebras 

A composition algebra (A, *, n) is an algebra over a field A, 

an involution * and a "norm" n(x) = x x*. Any field K gives rise to a 

series of composition algebras beginning with K, and the trivial 

involution, so that n(x) = x
2
. The inductive step in the series involves 

forming the direct sum A  A and using the new involution  

Leonard Dickson developed this construction 

doubling quaternions for Cayley numbers, and the doubling method 

involving the direct sum A  A is called the Cayley–Dickson 

construction. In the instance beginning with K = ℝ, the series 

generates complex numbers, quaternions, octonions, and sedenions. 

Beginning with K = ℂ and the norm n(z) = z
2
, the series continues 

with bicomplex numbers, biquaternions, and bioctonions. 

Max Zorn realized that the classical Cayley–Dickson construction missed 

constructing some composition algebras that arise as real subalgebras in 

the (ℂ, z
2
) series, in particular the split-octonions. A modified Cayley–

Dickson construction, still based on use of the direct sum A   A of a 

base algebra A, has since been used to exhibit the series ℝ, split-complex 

numbers, split-quaternions, and split-octonions. 
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7.3.3 Direct sum of Banach Spaces 

The direct sum of two Banach spaces X and Y is the direct sum 

of X and Y considered as vector spaces, with the norm ||(x,y)|| = ||x||X + 

||y||Y for all x in X and y in Y. 

Generally, if Xi is a collection of Banach spaces, where i traverses 

the index set I, then the direct sum  i I Xi is a module consisting of all 

functions x defined over I such that x(i)   Xi for all i   I and 

The norm is given by the sum above. The direct sum with this norm is 

again a Banach space. 

For example, if we take the index set I = N and Xi = R, then the direct 

sum  i NXi is the space l1, which consists of all the sequences (ai) of 

reals with finite norm ||a|| = ∑i |ai|. 

A closed subspace A of a Banach space X is complemented if there is 

another closed subspace B of X such that X is equal to the internal direct 

sum . Note that not every closed subspace is complemented. 

7.4 DIRECT SUM OF MODULES WITH 

BILINEAR FORMS 

Let {(Mi,bi)  : i   I} be a family indexed by I of modules equipped 

with bilinear forms. The orthogonal direct sum is the module direct 

sum with bilinear form B defined by
.
in which the summation makes 

sense even for infinite index sets I because only finitely many of the 

terms are non-zero. 

Direct sum of Hilbert spaces 

Further information: Positive-definite kernel § Connection with 

reproducing kernel Hilbert spaces and feature maps 

If finitely many Hilbert spaces H1,...,Hn are given, one can construct their 

orthogonal direct sum as above (since they are vector spaces), defining 

the inner product as: 

The resulting direct sum is a Hilbert space which contains the given 

Hilbert spaces as mutually orthogonal subspaces. 
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If infinitely many Hilbert spaces Hi for i in I are given, we can carry out 

the same construction; notice that when defining the inner product, only 

finitely many summands will be non-zero. However, the result will only 

be an inner product space and it will not necessarily be complete. We 

then define the direct sum of the Hilbert spaces Hi to be the completion 

of this inner product space. 

Alternatively and equivalently, one can define the direct sum of the 

Hilbert spaces Hi as the space of all functions α with domain I, such that 

α(i) is an element of Hi for every i in I and: 

The inner product of two such function α and β is then defined as: 

This space is complete and we get a Hilbert space. 

For example, if we take the index set I = N and Xi = R, then the direct 

sum  i N Xi is the space l2, which consists of all the sequences (ai) of 

reals with finite norm . Comparing this with the example for Banach 

spaces, we see that the Banach space direct sum and the Hilbert space 

direct sum are not necessarily the same. But if there are only finitely 

many summands, then the Banach space direct sum is isomorphic to the 

Hilbert space direct sum, although the norm will be different. 

Every Hilbert space is isomorphic to a direct sum of sufficiently many 

copies of the base field (either R or C). This is equivalent to the assertion 

that every Hilbert space has an orthonormal basis. More generally, every 

closed subspace of a Hilbert space is complemented: it admits 

an orthogonal complement. Conversely, the Lindenstrauss–Tzafriri 

theorem asserts that if every closed subspace of a Banach space is 

complemented, then the Banach space is isomorphic (topologically) to a 

Hilbert space. 

 

Check In Progress-I 

Q. 1 Define composition algebra. 

Solution 

………………………………………………………………… 

…………………………………………………………………………. 
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…………………………………………………………………………. 

………………………………………………………………………….

. 

Q. 2 Define direct sum.  

Solution 

………………………………………………………………… 

…………………………………………………………………………. 

…………………………………………………………………………. 

…………………………………………………………………………. 

7.5 DIRECT PRODUCT 

In mathematics, one can often define a direct product of objects already 

known, giving a new one. This generalizes the Cartesian product of the 

underlying sets, together with a suitably defined structure on the product 

set. More abstractly, one talks about the product in category theory, 

which formalizes these notions. 

Examples are the product of sets (see Cartesian product), groups 

(described below), the product of rings and of other algebraic structures. 

The product of topological spaces is another instance. 

There is also the direct sum – in some areas this is used interchangeably, 

while in others it is a different concept. 

The problems concerning direct products of projective modules, to which 

we now turn, are more difficult. We shall consider a more general 

situation, which leads us to a rather ambitious generalization of the 

theorem of Baer mentioned in the introduction. We shall show, roughly 

speaking, that if the direct product of a "large" number of copies of a ring 

£ can be embedded in a certain way in a direct sum of left £-modules, 

each of which is generated by a "small" number of elements, then £ must 

satisfy the descending chain condition on principal right ideals. First we 

introduce several concepts which will be needed in the proof of the main 

result. 
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Definition. Let £ be a ring, A be a left £-module, and A' be a submodule 

of A. A' will be called a pure submodule of A if A'(~\aA =aA' for all d££. 

 

Definition . Let £ be a ring, and A be a left £-module. Let {Cß} be a 

family of left £-modules (where ß traces some index set) and let fß 

£Homje(j4, Cß). The family {fß} will be called aí>-family of 

homomorphisms if the following conditions are satisfied for any X9^0 in 

A : 

(a) fß(x) =0 for almost all ß.  

(b) fß(x) 9¿0 for some ß. 

 

Definition  Let £ be a ring, and 7 be a left or right ideal in £. 7 will be 

called left T-nilpotent ii, for any sequence di, a2, ■ • • of elements of 7, 

there exists « > 0 such that did2 • • • an = 0 (right £-nilpotence requires 

that anan-i • • • di = 0 for some «). 

Examples 

 If we think of R  as the set of real numbers, then the direct product R 

x R is just the Cartesian product RxR. 

 If we think of  R  as the group of real numbers under addition, then 

the direct product RxR  still has { (x, y | x, y € R )} as its underlying 

set. The difference between this and the preceding example is that R 

x R  is now a group, and so we have to also say how to add their 

elements. This is done by defining . 

 If we think of R  as the ring of real numbers, then the direct product { 

(x, y | x, y € R )}  again has { (x, y | x, y € R )}  as its underlying set. 

The ring structure ring consists of addition defined by (a , b ) + (c , d 

) = ( a + c, b + d ) and multiplication defined by (a, b)(c, d) = (ac, 

bd). 

 However, if we think of R x R  as the field of real numbers, then the 

direct product R R does not exist – naively defining addition and 

multiplication componentwise as in the above example would not 
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result in a field since the element R x R x R x R ………. does not 

have a multiplicative inverse. 

In a similar manner, we can talk about the direct product of finitely many 

algebraic structures, e.g.  R x R x R x R ………. . This relies on the fact 

that the direct product is associative up to isomorphism. That is, R x 

R  for any algebraic structures R x Rx R x R x R of the same kind. The 

direct sum is also commutative up to isomorphism, i.e. A x B      for 

any algebraic structures A  and B of the same kind. We can even talk 

about the direct product of infinitely many algebraic structures; for 

example we can take the direct product of countably many copies of , 

which we write as  R x R x R x R ………. . 

7.5.1 Group Direct Product 

In group theory one can define the direct product of two groups (G, ∘) 

and (H, ∙), denoted by G × H. For abelian groups which are written 

additively, it may also be called the direct sum of two groups, denoted 

by . 

It is defined as follows: 

 the set of the elements of the new group is the Cartesian product of 

the sets of elements of G and H, that is {(g, h): g   G, h   H}; 

 on these elements put an operation, defined element-wise: 

(g, h) × (g', h' ) = (g ∘ g', h ∙ h') 

(Note that (G, ∘) may be the same as (H, ∙)) 

This construction gives a new group. It has a normal 

subgroup isomorphic to G (given by the elements of the form (g, 1)), and 

one isomorphic to H (comprising the elements (1, h)). 

The reverse also holds, there is the following recognition theorem: If a 

group K contains two normal subgroups G and H, such that K= GH and 

the intersection of G and H contains only the identity, then K is 

isomorphic to G × H. A relaxation of these conditions, requiring only one 

subgroup to be normal, gives the semidirect product. 
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As an example, take as G and H two copies of the unique (up to 

isomorphisms) group of order 2, C2: say {1, a} and {1, b}. Then C2×C2 = 

{(1,1), (1,b), (a,1), (a,b)}, with the operation element by element. For 

instance, (1,b)*(a,1) = (1*a, b*1) = (a,b), and (1,b)*(1,b) = (1,b
2
) = (1,1). 

With a direct product, we get some natural group homomorphisms for 

free: the projection maps define bycalled the coordinate functions. 

Also, every homomorphism f to the direct product is totally determined 

by its component functions . 

For any group (G, ∘) and any integer n ≥ 0, repeated application of the 

direct product gives the group of all n-tuples Gn (for n = 0 we get 

the trivial group), for example Zn and Rn. 

7.5.2 Direct Product of Modules 
The direct product for modules (not to be confused with the tensor 

product) is very similar to the one defined for groups above, using the 

Cartesian product with the operation of addition being componentwise, 

and the scalar multiplication just distributing over all the components. 

Starting from R we get Euclidean space R
n
, the prototypical example of a 

real n-dimensional vector space. The direct product of R
m
 and R

n
 is R

m+n
. 

Note that a direct product for a finite index  is identical to the direct 

sum . The direct sum and direct product differ only for infinite 

indices,where the elements of a direct sum are zero for all but for a finite 

number of entries. They are dual in the sense of category theory: the 

direct sum is the coproduct, while the direct product is the product. 

For example, consider  ,the infinite direct product and direct sum of the 

real numbers. Only sequences with a finite number of non-zero elements 

are in Y. For example, (1,0,0,0,...) is in Y but (1,1,1,1,...) is not. Both of 

these sequences are in the direct product X; in fact, Y is a proper subset 

of X (that is, Y ⊂ X). 

 

Check in Progress-II 

Q. 1 Define direct product of module. 
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Solution 

………………………………………………………………… 

…………………………………………………………………………. 

…………………………………………………………………………. 

…………………………………………………………………………. 

Q. 2 Define Direct product. 

Solution 

………………………………………………………………… 

…………………………………………………………………………. 

…………………………………………………………………………. 

…………………………………………………………………………. 

7.6 TOPOLOGICAL SPACE DIRECT 

PRODUCT 

The direct product for a collection of topological 

spaces Xi for i in I, some index set, once again makes use of the 

Cartesian product 

Defining the topology is a little tricky. For finitely many factors, this is 

the obvious and natural thing to do: simply take as a basis of open sets to 

be the collection of all Cartesian products of open subsets from each 

factor: 

This topology is called the product topology. For example, directly 

defining the product topology on R
2
 by the open sets of R (disjoint 

unions of open intervals), the basis for this topology would consist of all 

disjoint unions of open rectangles in the plane (as it turns out, it 

coincides with the usual metric topology). 

The product topology for infinite products has a twist, and this has to do 

with being able to make all the projection maps continuous and to make 

all functions into the product continuous if and only if all its component 

functions are continuous (i.e. to satisfy the categorical definition of 

product: the morphisms here are continuous functions): we take as a 
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basis of open sets to be the collection of all Cartesian products of open 

subsets from each factor, as before, with the proviso that all but finitely 

many of the open subsets are the entire factor: 

The more natural-sounding topology would be, in this case, to take 

products of infinitely many open subsets as before, and this does yield a 

somewhat interesting topology, the box topology. However it is not too 

difficult to find an example of bunch of continuous component functions 

whose product function is not continuous (see the separate entry box 

topology for an example and more). The problem which makes the twist 

necessary is ultimately rooted in the fact that the intersection of open sets 

is only guaranteed to be open for finitely many sets in the definition of 

topology. 

Products (with the product topology) are nice with respect to preserving 

properties of their factors; for example, the product of Hausdorff spaces 

is Hausdorff; the product of connected spaces is connected, and the 

product of compact spaces is compact. That last one, called Tychonoff's 

theorem, is yet another equivalence to the axiom of choice. 

For more properties and equivalent formulations, see the separate 

entry product topology. 

7.7 DIRECT PRODUCT OF BINARY 

RELATIONS 

On the Cartesian product of two sets with binary relations R and S, 

define (a, b)T(c, d) as aRc and bSd. If R and S are 

both reflexive, irreflexive, transitive, symmetric, or antisymmetric, then 

T will be also.
[3]

 Combining properties it follows that this also applies for 

being a preorder and being an equivalence relation. However if R and S 

are total relations, T is in not general total. 

Direct product in universal algebra 

If Σ is a fixed signature, I is an arbitrary (possibly infinite) index set, and 

(Ai)i I is an indexed family of Σ algebras, the direct product A = 

∏i I Ai is a Σ algebra defined as follows: 
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1. The universe set A of A is the Cartesian product of the universe 

sets Ai of Ai, formally: A = ∏i I Ai; 

2. For each n and each n-ary operation symbol f   Σ, its 

interpretation f
A
 in A is defined componentwise, formally: for 

all a1, …, an   A and each i   I, the ith component of f
A
(a1, 

…, an) is defined as f
A

i(a1(i), …, an(i)). 

For each i   I, the ith projection πi : A → Ai is defined by πi(a) = a(i). It 

is a surjective homomorphism between the Σ algebras A and Ai. 

As a special case, if the index set I = { 1, 2 }, the direct product of two Σ 

algebras A1 and A2 is obtained, written as A = A1 × A2. If Σ just contains 

one binary operation f, the above definition of the direct product of 

groups is obtained, using the notation A1 = G, A2 = H, f
A

1 = ∘, f
A

2 = ∙, 

and f
A
 = ×. Similarly, the definition of the direct product of modules is 

subsumed here. 

7.8 CATEGORICAL PRODUCT 

The direct product can be abstracted to an arbitrary category. In a general 

category, given a collection of objects Ai and a collection 

of morphisms pi from A  with i ranging in some index set I, an object A is 

said to be a categorical product in the category if, for any object B and 

any collection of morphisms fi from B to Ai, there exists a unique 

morphism f from B to A such that fi = pi f and this object A is unique. 

This not only works for two factors, but arbitrarily (even infinitely) 

many. 

For groups we similarly define the direct product of a more general, 

arbitrary collection of groups Gi for i in I, I an index set. Denoting the 

Cartesian product of the groups by G we define multiplication on G with 

the operation of componentwise multiplication; and corresponding to 

the pi in the definition above are the projection maps 

7.9 INTERNAL AND EXTERNAL DIRECT 

PRODUCT 

Some authors draw a distinction between an internal direct product and 

an external direct product. If then we say that X is an internal direct 
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product of A and B, while if A and B are not subobjects then we say that 

this is an external direct product. 

7.10 METRIC AND NORM 

A metric on a Cartesian product of metric spaces, and a norm on a direct 

product of normed vector spaces, can be defined in various ways, see for 

example p-norm. 

Definition .1. Let {Mi }i I be a family of left R-modules. The direct 

product of {Mi }i I is the cartesian product: Q i IMi = {(ai)i I | ai Mi 

for all i  I } in which (ai)i I = (bi)i I if and only if ai = bi for all i  I. 

Proposition 2. Let {Mi }i I be a family of left R-modules. 

(1) Define addition on Q i IMi as follows:  

(2) (ai)i I + (bi)i I = (ai +bi)i I , for all (ai)i I , (bi)i I  Q i IMi . 

Then ( Qi IMi ,+) is an abelian group.  

(2) Q i IMi is a left R-module. Proof. (1)Exercise.  

(2) Define • : R × Q i IMi → Q i IMi by r • (ai)i I = (r ai)i I , for all r 

  R and for all (ai)i I  Q i IMi . Then • is a module multiplication, 

since for all r,s  R and for all (ai)i I , (bi)i I  Q i IMi we have that r 

•((ai)i I + (bi)i I ) = r •((ai +bi)i I ) = (r (ai +bi))i I = (r ai +r bi)i I = (r 

ai)i I + (r bi)i I = r • (ai)i I + r • (bi)i I and (r +s) • (ai)i I = ((r 

+s)ai)i I = (r ai +s ai)i I = (r ai)i I + (s ai)i I = r • (ai)i I +s • (ai)i I . 

Also, (r s)•(ai)i I = ((r s)ai)i I = (r (s ai))i I = r •(s ai)i I = r •(s •(ai)i I 

). Thus • is a module multiplication and hence Q i IMi is a left R-

module. 

Definition. Let {Mi }i I be a family of left R-modules. The external 

direct sum of {Mi }i I is denoted by ` i IMi and defined as follows: ` 

i IMi = {(xi)i I  Q i IMi | xi = 0Mi for all i but finite many i  I }. 

Theorem 2.1. For any ring R the following statements are equivalent:  

(a) The direct product of any family of flat right R-modules is flat. 
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 (b) £Ae direct product of any family of copies of R is flat as a right 

Rmodule.  

(c) A ny finitely generated submodule of a free left R-module is finitely 

related. 

 (d) Any finitely generated left ideal in R is finitely related. 

Proof. (a)=>(b): Trivial, since £ is a flat right £-module.  

(b)=>(c) : Let G be a free left £-module, and £ be a finitely generated 

submodule of G. Clearly we may assume that G is finitely generated; 

hence, for some integer 5>0, we may identify G with the left £-module of 

all 5-tuples (Xi, • • • , X,) of elements of £. Let Ui, • • • , ur generate L, 

where uk = (Xjti, • • • , X*,)- Let £ be a free left £-module with basis Xi, 

• • • , xT, and define an epimorphism /: £—>£ by f(xk)=uk. Set £ = 

ker(/), and for each a££ let RM be a copy of £. Define A = ITasx£(a), 

which we shall view as a right £-module. If a = di(a)xi-f- • • • +ar(a)xr is 

in K, then di(a)7ii+ • • ■ +ar(a)ur=f(a)=0, and so 2~ll~i d*(a)X*y = 0 for 

all j s. Thus, setting d* = {dt(a)} £.4 for k = 1, • • • , r, we get that 2~Ll-i 

ak\kj = 0 for j — s.  

By hypothesis, A is a flat right £-module; hence there exist h, • • • , 

b„EA and {pik}ç.R (i n, k r) satisfying the conditions of Set Zi= 2 .1-1 

PikXkEF for 7^»; then f(z/) = X*-i M.*"* = 0, since 2~lt-i /»«X*y = 0 

for all j = s.  

Hence Zi, • • • ,zn££. Write £><={¿»¿(a)}, where ¿>(d): Trivial 

(d)=>(b): Let {£(a)} be any family of copies of £, and A = JJ« RM> 

which we shall view as a right £-module. Suppose that diXi+ • • • +drXr 

= 0, where a*= {ak(ct)} EA and Xt££, k = r. Let 7 be the left ideal in £ 

generated by Xi, • ■ • ,Xr, £ be a free left £-module with basis xi, • • ■ , 

xr, and /: £—>7 be the epimorphism defined hyf(xk) =X*. Let £ be the 

kernel of/; by hypothesis, K is finitely generated. Let z\, ■ • ■ , z„ be a 

set of generators of £, and write z,= ^¡b-iMi***- Setting u(a) =ai(a)xi+ • 

• • +ar(ct)xT, we have that f(u(a))=ai(a)\i+ • ■ ■ +dr(a)Xr = 0, and so 

there exist 6. 
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(c)=*(a):Let {Aa} beafamily of flat right £-modules, and set A = lL,^«. 

Define a functor F from the category of left £-modules to the category of 

abelian groups by V(C) = lT„ (Aa®iiC). It is well-known that F is 

additive and exact [3, p. 31, Exercise 2]. Define a natural transformation 

t:A®R(-) -*V(-) as follows: If C is a left £-module, then tc: A®BC-

+V(C) is defined by tc({aa}®c) = {aa®c}, where cQC and {aa}£.4. Now 

let 0—»£—>£—»C—»0 be an exact sequence of left £-modules, where 

C is finitely generated and £ is free of finite rank. We then get the 

following commutative diagram: 

where the rows are exact. That V is additive, F(£) «.4, and £ is free of 

finite rank implies immediately that tf is an isomorphism. It then follows 

from routine diagram-chasing that tc is an epimorphism. Suppose now 

that K is also finitely generated; i.e., C is finitely related. Then, replacing 

C by K in the above argument, we obtain that ix is an epimorphism. 

Further diagram-chasing then shows that tc is an isomorphism. But since 

£ is a finitely generated submodule of a free left £-module, it follows 

from our hypotheses that K is finitely related; hence tg. is an 

isomorphism, too. We may then conclude that the sequence 0—

>A®rK—>A®rF -^A®rC—>0 is exact, and thus Torf(.á, C)=0.  

              Now let C be any finitely generated left £-module, and 0—*£—

>£—>C—*0 he an exact sequence, where £ is free of finite rank. The 

family {£$} of all finitely generated submodules of K form, in the 

obvious way, a directed system of which the direct limit is K. Then C is 

the direct limit of the induced directed system {Cß}, where Cß = F/Kß. 

We obtain from our previous remarks that Tor?C 

Clearly every left Noetherian ring satisfies condition (d) of Theorem 2.1. 

Hence the theorem may be viewed as a generalization of , which states 

that the direct product of a family of flat right modules over a left 

Noetherian ring is again flat. Indeed, the final part of the proof given 

above follows to some extent the proof suggested in that exercise. 

We shall now present a purely ideal-theoretic characterization of the 

class of rings described in Theorem 2.1. This characterization is based 

upon a result concerning residual division in commutative rings, which 
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was communicated to me by J. Eagon. We need first a couple of 

definitions and lemmas. 

Lemma Let I = Rai+ • • • +Ran be a left ideal in a ring R, and let d££. 

Set J=I+Ra, and let F be a free left R-module with basis Xi, • • - , x„+i. 

Define a homomorphism f: F—+J by f(x/) = a< for i^n and f(xn+i) = a. 

Let K = ker(f), and set F' = Rxi+ ■ ■ ■ +RxnQF and £' = £H£'. Then 

there exists a homomorphism g: K—>(I: a) such that ker(g) =£'. 

Proof. If uEK, write u=\iXi+ • • • +X„x„-r-Xuxn+i; then Xidi+ • • • 

+X„d„+Xud=/(«) = 0, and so X„£(7:a). Define g by g(u)=\u. 

Straightforward computations then complete the proof. 

7.11 LET US SUM UP 

We study in this unit about direct product of binary realation. We study 

norm and metric. We study category product. We study direct product in 

topological space. We study construction of finite and abelian group. We 

study direct sum of module and additional structure. 

1. Suppose V and W are vector spaces over the field K. The cartesian 

product V × W can be given the structure of a vector space 

over K (Halmos 1974, §18) by defining the operations component wise: 

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2) 

α (v, w) = (α v, α w ) for v, v1, v2   V, w, w1, w2   W, and α   K. 

2. For abelian groups G and H which are written additively, the direct 

product of G and H is also called a direct. Thus the cartesian 

product G × H is equipped with the structure of an abelian group by 

defining the operations componentwise: 

(g1, h1) + (g2, h2) = (g1 + g2, h1 + h2) 

for g1, g2 in G, and h1, h2 in H. 

3. The direct sum gives a collection of objects the structure of a 

commutative monoid, in that the addition of objects is defined, but not 

subtraction. In fact, subtraction can be defined, and every commutative 
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monoid can be extended to an abelian group. This extension is known 

as the Grothendieck group. 

4. The direct sum of two Banach spaces X and Y is the direct sum 

of X and Y considered as vector spaces, with the norm ||(x,y)|| = ||x||X + 

||y||Y for all x in X and y in Y. 

5. Let £ be a ring, A be a left £-module, and A' be a submodule of A. A' 

will be called a pure submodule of A if A'(~\aA =aA' for all d££. 

6. Let {Mi }i I be a family of left R-modules. The direct product of {Mi 

}i I is the cartesian product: Q i IMi = {(ai)i I | ai Mi for all i  I } in 

which (ai)i I = (bi)i I if and only if ai = bi for all i  I. 

7.12 KEYWORD 

Banach Space: A Banach space is a vector space X over any 

scalar field K, which is equipped with a norm and which is complete 

with respect to the distance function induced by the norm. 

Krull-Schmidt :A Krull–Schmidt category is a generalization of 

categories in which the Krull–Schmidt theorem holds. They arise, for 

example, in the study of finite-dimensional modules over an algebra. 

Chasing :Drive or cause to go in a specified direction 

7.13 QUESTIONS FOR REVIEW  

Example1. Let R = Q i N F be a product of fields F and let Mi = FR. 

Then M = L i NMi is semisimple and E(M) = Q i N F, thus M is a 

quasi-injective R-module which is not injective. 

Example 2.. Let R = F F 0 F  with F a field. Then M = F F 0 0  is an 

injective R-module and N = 0 0 0 F  is a quasi-injective R-module. 

However, M   N = R is not a quasi-injective R-module. 

Example 3. Consider Zp and Zp2 , where p is a prime number. Each of 

these is a quasi-injective Z-module. However, Zp Zp 2 is not a quasi-

injective Z-module. 
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Example4  E = Ln i=1 Ei is injective iff each Ei is injective for 1 ≤ i ≤ n. 

Example 5 If  M = L α I Mα is injective if and only if each Mα is 

injective and (A1) holds where I is an index. 

Example.6  Let R be a ring which has only 3 right ideals but which is 

not left artinian. Then M = RR is continuous but not quasi-injective. 

Since if so, R will be right self-injective and hence quasi-Frobenius, a 

contradiction. 

Example7Zp,Zp 3 are quasi-injective Z-modules, where p is a prime 

number; consequently, each of these modules is quasi-injective hence 

(quasi-)continuous, and so extending. However, Zp Zp 3 is not an 

extending Z-module. 

Example8  Direct sums of extending modules are not extending in 

general: 

(i) Let M = L∞ i=1 Z. Then M is not an extending Z-module, 

while the domain Z is uniform and hence extending; 

(ii)  Let R = Z[X]. Thus R is a commutative Noetherian domain 

(hence quasicontinuous), but R   R is not an extending R-

module. 

Example 9. Let M = L i IMi where I is an index set. If I is finite or R is 

right Noetherian, then M is continuous if and only if each Mi is 

continuous and Mj -injective for all j 6= i  I 

Example 10. The Z-module Zpn  Zpn+1 is self-ojective but not self-

injective 

Example 11. Let M = M1   · · ·  Mn, where the Mi are uniform. Then 

M is extending and the decomposition is exchangeable if and only if Mi 

is Mj -ojective for all i 6= j   I. 

7.14 ANSWER FOR CHECK IN 

PROGRESS 

Check in Progress-I 
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Answer Q. 1 Check in Section 1.6.2 

  Q. 2 Check in Section 1.1 

Check in Progress-II 

Answer Q. 1 Check in Section 2.1 

  Q. 2 Check in Section 2 
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